
Proceedings of the 2019 Winter Simulation Conference
N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds.

ON THE MODELING AND AGENT-BASED SIMULATION
OF A COOPERATIVE GROUP ANAGRAM GAME

Zhihao Hu
Xinwei Deng

Virginia Tech
Blacksburg, VA 24061, USA

Abhijin Adiga, Gizem Korkmaz
Chris J. Kuhlman, Dustin Machi
Madhav V. Marathe, S. S. Ravi

University of Virginia
Charlottesville, VA 24061, USA

Yihui Ren

Brookhaven National Laboratory
Upton, NY 11973, USA

Vanessa Cedeno-Mieles

Virginia Tech
Escuela Superior Politécnica del Litoral, ESPOL

Guayaquil, ECUADOR

Saliya Ekanayake

Lawrence Berkeley National Laboratory
Berkeley, CA 94720, USA

Brian J. Goode, Naren Ramakrishnan
Parang Saraf, Nathan Self

Virginia Tech
Blacksburg, VA 24061, USA

ABSTRACT

Anagram games (i.e., word construction games in which players use letters to form words) have been
researched for some 60 years. Games with individual players are the subject of over 20 published
investigations. Moreover, there are many popular commercial anagram games such as Scrabble. Recently,
cooperative team play of anagram games has been studied experimentally. With all of the experimental
work and the popularity of such games, it is somewhat surprising that very little modeling of anagram
games has been done to predict player behavior/actions in them. We devise a cooperative group anagram
game and develop an agent-based modeling and simulation framework to capture player interactions of
sharing letters and forming words. Our primary goals are to understand, quantitatively predict, and explain
individual and aggregate group behavior, through simulations, to inform the design of a group anagram
game experimental platform.

1 INTRODUCTION

1.1 Background and Motivation

Anagram games, or word construction games, consist of players forming words from a provided group
of letters. Research on anagram games—individual anagram games—has a long history that dates back
at least to 1958, and encompasses more than 20 works that study a variety of issues. Moreover, there
are many popular anagram games that are typically played by competing individuals, such as Scrabble,
Bananagram, and Upwords. Recently, Charness et al. (2014) introduced a group anagram game (GrAG),
where players cooperate to form words. See Section 2 for details.

Considering the substantial use of anagram games, it is surprising that almost no work has been done in
modeling and simulating these games. In particular, we are interested in modeling GrAGs, notably player
interactions and inter-dependence, and the implications of these interactions. There are several general

Hu, Deng, Adiga, Korkmaz, Kuhlman, Machi, Marathe, Ravi, Ren, Cedeno-Mieles, Ekanayake, Goode,
Ramakrishnan, Saraf, and Self

reasons to prefer computational modeling over (laboratory) experiments, e.g., the ability of a validated
model to perform computational experiments much faster and at lesser cost. Beyond general motivations,
there are several reasons that are expressly related to anagram games, including: (i) modeling GrAGs can
be a precursor to modeling other phenomena such as team unity (Charness et al. 2014); and (ii) GrAGs
have much in common with other situations in which individuals may share resources in order to mutually
benefit (e.g., how to cope during crises, such as hurricanes and forest fires, along with others who remain
behind (Yang et al. 2019)). Finally, a primary motivation for our modeling and simulation work is to predict
and understand individual and group performance (e.g., aggregate temporal changes in numbers of words
formed, letters requested, and letter replies) in this game in order to provide insights for designing a GrAG
software platform for conducting GrAG experiments.

1.2 Our Group Anagram Game (GrAG)

An overview of the GrAG is given here; details are provided in Section 3. The GrAG is a game played
among several players that work cooperatively to form words. They share letters with their immediate
neighbors (players are arranged in a network) who use them to form more words than they could form
using only their own allotment of letters. Figure 1 shows an illustrative conceptual view of the pair-wise
interactions among four players over three time steps. The stated goal of the game is for the team to form
as many words as possible. This is because the team’s earnings in the game are directly proportional to
the number of words that the team forms in total. All players split the earnings evenly, regardless of their
performance in the game (e.g., regardless of how many words a particular player forms). This is done to
motivate the players to cooperate. Hence, forming the greatest number of words is equivalent to players
trying to maximize their earnings.

u, r, k

b, g, s c, t, o

time t

v3v2

v1

a, p, m

v4

u, r, k

b, g, s, u c, t, o

time t+1

v3v2

v1

a, p, m, o

v4

re
qu

es
t “

u”

form “cot”

re
qu

es
t “

o”

re
pl

y
“u

”

re
pl

y
“o

”

request “o”
idea:
form
“bug”

idea:
form
“mop”

idea: form “bog”

u, r, k

b, g, s c, t, o
form “bug”

time t+2

v3v2

v1

a, p, m

v4

u, r, k

b, g, s, o c, t, o

time t+3

v3v2

v1

a, p, m

v4

reply “o”

form “mop”

request “m”

idea:
form
“rum”

time t time t+1 time t+2

Figure 1: Illustration of the group anagram game (GrAG) setup, and interactions among the four networked
players over three time steps. Gray thick lines represent communication channels over which players can
request letters from their distance-1 neighbors, and receive them if/when they are sent. Each player vi has a
box containing a sequence Lih

i of letters in-hand (i.e., letters that they can use) to form words. Owned letters
(i.e., those initially assigned to a player) are in black and received letters from neighbors are in brown. For
example, at time (t + 1), v2 has Lih

i = (b,g,s,u); u is a received letter. Player actions (in blue) are form
words, request letters from neighbors, reply to neighbor letter requests, and think (think not shown; it is a
no-op). Player motivations are in magenta, e.g., at time t, v2 gets the idea to form bug, and so requests u. A
letter received from another player vanishes once it is used (see Section 3 for details).

We emphasize that our work is not modeling cognitive processes within agents that determine agent
actions. Rather, we model differences among players’ actions by changing their probabilities of taking
actions. As will be explained later, greater probabilities result in more actions by players.

Hu, Deng, Adiga, Korkmaz, Kuhlman, Machi, Marathe, Ravi, Ren, Cedeno-Mieles, Ekanayake, Goode,
Ramakrishnan, Saraf, and Self

1.3 Novelty of Our Work

The novelty of our work is in modeling our GrAG. There is essentially no work in modeling (and thereby
predicting) individual behavior in individual anagram games, and there is only one work (Ren et al. (2018))
on predicting player actions in a GrAG. Our GrAG specification differs in an important way from Ren et al.
(2018) because in our setup, a player must request a letter for each use, which leads to far more interactions
among players. Also, our modeling techniques and the quantities that we predict are also markedly different
from this previous work; in our models, a player’s actions are based on particular words being formed and
the particular letters a player needs (from her neighbors) to form these words (see Section 2). We also
propose and evaluate performance measures for game players in our simulations, which has not been done
for a GrAG. Even though our model is simplified in some respects (in the absence of data to support more
sophisticated models), it gives rise to interesting individual and group dynamics.

1.4 Our Contributions

1. Model of a group anagram game (GrAG). A model for the GrAG has been developed. The model is
presented as a set of algorithms in Section 4, useful for understanding the model and for presenting the
agent-based simulation (ABS) formulation. The model has different types of parameters that can be tuned
to study different behaviors. These are: (i) word corpus for forming valid words; (ii) the number of initial
letters assigned to agents (players) and the particular letter assignments; (iii) the network of players (the
number of players and the communication channels); and (iv) propensities for players to take particular
actions (e.g., form word, request a letter, reply to a letter request).

2. Simulations and results for various parameters. We construct software modules of the game models
and exercise them in an high performance computing (HPC) agent-based modeling and simulation (ABMS)
framework to understand game player performance (Section 5). We evaluate parameters such as network
density and number of letters assigned to each player. Several interesting phenomena arise. For example,
reducing the number of communication channels for a player, from ten to two, increases the number of
words generated by the team, for many simulation conditions, because players do not get overloaded with
requests that they cannot respond to (in a timely manner).

3. Player performance evaluation. We devise and compute simple performance metrics for agents in the
game (Section 4). We study factors that lead to changes in player performance, including activity level of
players and numbers of letters assigned to players (Section 5).

4. Use of modeling and simulation results. Modeling results are used in two ways in Section 6. First, the
computational results provide insights into parameters and parameter values that help guide specification
of game conditions for an online game platform. Second, the computational findings enable hypotheses to
be formed that can then be tested (with the aforementioned game platform).
Paper organization. Related work is in Section 2. A detailed description of the experimental setup appears
in Section 3. The models of the GrAG and player performance are provided in Section 4. Simulation
results of modeling the game are in Section 5. Uses of the modeling results are described in Section 6. A
summary with limitations of our study concludes the work.

2 RELATED WORK

Individual anagram games. Research on individual-based anagram games has a long history, with over
20 research studies. Mayzner and Tresselt (1958) conducted experiments where players had to unscramble
letters to form a unique word. Their goal was to evaluate the degree of scramble of letters, quantified by
an edit distance, and its effect on time to form a word. Individual anagram games, where a player forms
words with provided letters within a specified time, have been used to study performance anxiety (Russell
and Sarason 1965), goal achievement and attributing success or failure (Feather and Simon 1971), and
whether people prefer pay that is or is not tied to performance (Cadsby et al. 2007).

Hu, Deng, Adiga, Korkmaz, Kuhlman, Machi, Marathe, Ravi, Ren, Cedeno-Mieles, Ekanayake, Goode,
Ramakrishnan, Saraf, and Self

Group anagram games. Face-to-face group anagram games were performed recently in Charness et al.
(2014). That work is purely experimental, where players sit at a table and cooperatively form words with
a fixed collection of letters. The GrAG is used as a priming activity to foster a sense of unity within the
group. The one modeling work on GrAGs is Ren et al. (2018). They develop a time-sequence model that
predicts the types of actions a player forms as the game progresses. Their predictions are of the type “player
vi selects action type ‘form word’ at time t.” The action is assumed to take place, without regard for the
letters that vi or vi’s neighbors possess. For example, if a player has letters g, b, and x, and the predicted
action is form word, then their model will still form an unspecified word from these letters. Our model
accounts for letters that players and their neighbors possess and only executes actions if it is possible to
do so. Moreover, our GrAG has a key difference. In the game of Ren et al. (2018), neighboring letters
only have to be requested once, because each possessed letter is assumed to be in infinite supply. That
is, once a player vi receives the requested letter a, for example, vi can use a in any number of words; the
letter is never exhausted. In our game, however, each use of a neighbor’s received letter is consumed so
that letters must be requested and received for each use. This leads to many more player interactions.

3 GROUP ANAGRAM GAME (GrAG) DESCRIPTION

Game configuration. A number n of players and a fixed graph G(V,E) on these players is specified, where
vi ∈ V , i ∈ {1,2, . . . ,n}, n = |V |. The edge set E represents a set of undirected channels such that edge
e = {vi,v j} means that players (nodes) vi and v j can communicate. Each player is initially assigned n`
alphabetic letters, either at random or deliberately, and although each player can have a different number
of letters, for exposition, it is assumed that all players receive the same number of (initial) letters. See
Figure 1.
Player actions in game. As time marches forward, every player can take the actions identified in Table 1
any number of times and in any order within the game duration tg. The set A of actions is A= {a1,a2,a3,a4},
and includes requesting letters, replying to letter requests, and forming words.

Table 1: Actions ai ∈ A of players vi,v j ∈ V in the GrAG. Note that each of actions a2 request letter and
a3 reply with letter involves two effects on players. A letter request is sent by one agent and received by
another. A letter reply is sent by one agent and received by another. These ideas of send and receive are
prominent in the models and simulations, as are the actions.

Item Variable Action Name Description
1 a1 form word vi forms and submits a word.
2 a2 request letter vi requests a letter ` from a neighbor v j.
3 a3 reply with letter v j replies to vi’s letter request, with the requested letter `.
4 a4 thinking vi is thinking.

Player use of alphabetic letters. Players use letters in different ways, depending on whether a letter is
initially assigned, or has been received from a neighbor. A player has an infinite supply of their initially-
assigned letters. This way, a player can share any of its n` letters with her distance-1 neighbors any number
of times, to increase cooperation. At the same time, a player can use their own letters redundantly in any
number of words. However, each letter that vi receives from a distance-1 neighbor cannot be shared with
other neighbors of vi. Also, when a received letter is used to form a word, then this letter is consumed and
hence can no longer be used. If vi wishes to use that letter again, it must request and receive it again.

For example, if vi has letters Lih
i = (e,s, t,m), and e and s are owned letters, then vi can form the word

see because e and s can be used any number of times in a word. After vi submits see, it still has letters
in-hand Lih

i = (e,s, t,m). However, if e is a received letter, then vi cannot form see; vi would need two
e’s from the same or different neighbors. Suppose vi has Lih

i = (d,c,o,g,g, j) and that owned letters are
(d,c,o). Then, when vi forms cog, Lih

i is updated to (d,c,o,g, j).

Hu, Deng, Adiga, Korkmaz, Kuhlman, Machi, Marathe, Ravi, Ren, Cedeno-Mieles, Ekanayake, Goode,
Ramakrishnan, Saraf, and Self

Forming words. A corpus of words CW is provided for the game. A submitted word is considered valid
if it is an element of the corpus. Otherwise it is invalid. A valid word may only be submitted one time by
a player. The set of words formed up to time t by vi is denoted Wi. Wi is the words formed over the entire
game if no time is specified. However, multiple players can form the same word.
Illustrative cooperative actions in game play. A series of three time steps in a game is provided in
Figure 1, from time t through time (t +2). Time (t +1) is separated into two visuals to make the dynamics
clearer. There are four players, v1 through v4, arranged in a “circle” configuration where each node vi has
degree di = 2. Next to each player is a box containing letters. These represent the letters that a player
has in-hand (i.e., in their possession) that can be used to form words. The letters that a player is assigned
initially are the initial letter assignments, shown in the players’ boxes of letters in black. For example, if
we assume that n` = 3 and that the letters in-hand at time t are the initial letters (also called owned letters),
then v1 has initial letters (u,r,k). Each player in the game knows her distance-1 neighboring players and
her neighbors’ letters so that they can be requested.

Figure 1 illustrates several actions in a game. At time t, v2 thinks to form the word bug (magenta text)
and therefore requests letter u from v1. Player v3 forms the word cot from its three owned letters, and
hence maintains all three letters. At time (t+1), v1 responds to v2 with letter u. Received letters are shown
in brown to distinguish them from owned letters. Also at (t +1), v2 forms and submits word bug (that is
why u was requested). (Blue text is an action.) v2 loses u after forming bug. The game ends when t = tg.

4 MODELS and ABM ALGORITHMS

4.1 Group Anagram Game

Figure 2 provides an abstract view, in the form of a graph G(V,E), of the same game configuration
as in Figure 1. Here, the four players vi ∈ V , i ∈ {1,2,3,4} are represented as graph vertices and the
communication channels are represented by the edge set E, where e = {vi,v j} ∈ E for vi,v j ∈ V . (Note
that for models, we use the terms player, agent, node, and vertex interchangeably.)

Each agent vi ∈ V in the ABM is assigned a set of the data structures in Figure 2. See the caption
for B1

i and B2
i . Each entry in a buffer is a data structure itself. For example, B2

i contains letter requests,
made by vi. Fields in a request include: the letter ` requested, the particular word w that vi seeks to form
with the letters, the neighbor vk to whom the request is sent, the requestor vi, a unique universal identifier,
and the time t of the request. Fields of letter requests in buffer B1

i , to which vi may reply (i.e., the reply
buffer), include the requestor v j, the letter requested `, the universal identifier in the request that instigated
this reply, the time t of the request, and the agent to which the request is made (which is vi, used for
verification). Another data structure (not shown) contains all letter requests made for a particular word w
because a word may require multiple letters from neighbors. Let Lih

i be the sequence of letters currently
possessed by vi in a GrAG. Let L′i be the combined set of all letters initially assigned to all distance-1
(immediate) neighbors of vi.

Request sent
buffer, B2

i

Words
formed

Own
letters

Shared
letters

!3

!4

!2

!1!iData structures for each player

Request reply
buffer, B1

i

Figure 2: Abstract view of the group anagram game (GrAG) (cf. Figure 1) to support modeling. Each node
(player) vi ∈V has the structures depicted to support the player actions in Table 1. Buffer B1

i contains letter
requests from neighboring players to which vi may respond. Buffer B2

i contains letter requests from vi to its
neighbors.

Hu, Deng, Adiga, Korkmaz, Kuhlman, Machi, Marathe, Ravi, Ren, Cedeno-Mieles, Ekanayake, Goode,
Ramakrishnan, Saraf, and Self

For each agent in each simulation, pact = (p f w, psreq, psrep, pthink) is specified. This is a 4-tuple of
fixed probability values, whose sum must be 1.0. These vector elements correspond, respectively, to the
probability of an agent vi taking actions a1 through a4 of Table 1 at each time step. At each time, each vi
uniformly samples a probability p∗ from [0,1]. An agent deterministically chooses the action a ∈ A based
on pact using p∗, and executes a.

Two algorithms are given in this section for modeling the GrAG. They are presented in a style for
understanding both the agent model and the simulation process. Some details are omitted for clarity. For
example, the software implementation uses a distributed HPC framework, but specifying aspects of the
distributed computations provides no insights into the agent model nor the simulation process.

The controlling algorithm (not shown) loops over individual and independent executions of the game
dynamics (each execution is called a run), such that a simulation is comprised of a user-specified number
of runs. For example, multiple runs may be used to obtain variability for stochastic simulations where
each run has the same initial conditions I. For each run, the simulator loops over discrete times, and for
each time, the simulator iterates over all agents. For each agent, the VERTEX FUNCTION algorithm (see
Algorithm 1) is invoked.

Algorithm 1 is the entrypoint into computations for individual agents vi ∈V . An agent first receives
all messages from its neighbors that were sent in the previous time step, and buffers B1

i and B2
i are updated

accordingly. Then, the action a that agent vi takes at t is determined. The algorithm VERTEX ACTION
(Algorithm 2) is invoked with vi and action a. Algorithm VERTEX ACTION executes the action a. All
actions are detailed in this algorithm, and may result in updates of buffers, forming a word, forming letter
requests and replies, and sending a letter request or reply.

Recall that letters that players have available to form words are used differently, depending on whether
the letter is initially assigned to a player or is a letter of a distance-1 (immediate) neighbor. A letter that
is initially assigned to vi can be used any number of times, including multiple times within one word. So
a player can form tot with initial letters Linit

i = (b, t,o), but if vi’s initial letters are Linit
i = (b,g,o), then vi

must request and receive two t’s from neighbors.

Algorithm 1: Steps of the Algorithm VERTEX FUNCTION.
1 Input: Time t. Agent vi. Neighbors n[i] of vi in G(V,E). Letters L′i of neighbors of vi. Letters that vi has in-hand Lih

i . Probabilities of
actions in A, pact = (p f w, psreq, psrep, pthink). Word corpus CW . Buffer of vi’s outstanding letter requests made B2

i . Buffer of letter
requests to vi, B1

i .

2 Output: The next action a ∈ A and the updated values (state) of all inputs.

3 Steps:
A. Receive all letter requests from neighbors n[i] of vi, sent to vi at the previous time (t−1), and put in buffer B1

i . These are requests that vi
may reply to.

B. Receive all letter replies from vi’s neighbors that are in response to vi’s letter requests, sent to vi at the previous time (t−1), and put in
Lih

i ; mark this letter request in B2
i as fulfilled. If received letters enable a visited word to now be formed, then form the word and submit.

C. Sample from a uniform distribution [0,1], value p∗.
D. From the vector pact = (p f w, psreq, psrep, pthink) of probabilities for actions a1 through a4, respectively, of Table 1, and p∗, determine the

action a ∈ A that vi will take at this time t.
E. Call the action routine for vertex vi (Algorithm 2, VERTEX ACTION).
F. Write updated state (variable values) to file for vi at time t.

Hu, Deng, Adiga, Korkmaz, Kuhlman, Machi, Marathe, Ravi, Ren, Cedeno-Mieles, Ekanayake, Goode,
Ramakrishnan, Saraf, and Self

Algorithm 2: Steps of the Algorithm VERTEX ACTION for vertex vi.
1 Input: Time t. Agent vi. Action a ∈ A. Neighbors n[i] of vi in G(V,E). Letters L′i of neighbors of vi. Letters that vi has in-hand Lih

i .
Probabilities of actions in A, pact = (p f w, psreq, psrep, pthink). Word corpus CW . Buffer of vi’s outstanding letter requests made B2

i .
Buffer of letter requests to vi, B1

i .

2 Output: The updated values (state) of all inputs.

3 Steps:
A. if a equals a1 do ## Action a is for vi to form word.

i. Select randomly a word w ∈CW , where w /∈Wi (i.e., vi cannot repeat words), and can be formed with letters in Lih
i ∪L′i (i.e., the

union of letters in-hand and the letters of neighbors). If all letters, including multiplicities, of w are in Lih
i (i.e., are in-hand), then

form and submit word. Otherwise, there are letters ` that need to be requested. Put these letters ` of w (each needed letter instance
is an individual request) in B2

i (to be requested). If there is no such w ∈CW , do nothing.
B. if a equals a2 do ## Action a is for vi to send letter request.

i. If there is a letter request in B2
i that has not been sent, send one request using first-in first-out (FIFO) order. Mark request as sent.

Otherwise, do nothing.
C. if a equals a3 do ## Action a is reply (with letter) to a letter requested by a neighbor.

i. If there is a letter request from a neighbor of vi in B1
i , that is waiting to be fulfilled, then send a letter reply using FIFO ordering,

and mark the request in B1
i as fulfilled. Otherwise, do nothing.

D. if a equals a4 do ## Action a is think.
i. Do nothing. The process of vi thinking just consumes time.

E. Return updated state (variable values) for input variables (above) of vertex vi.

4.2 Performance Parameters For Individual Players

Let Li = Lih
i ∪L′i be the sequence of all letters available to vi (its own assigned letters and those of its

neighbors). The set W tot
i ⊆CW of words that vi can form are the words w ∈CW such that every letter ` of

w is in Li.
The performance of vi in a GrAG is given by three parameters: (i) αw,i in forming words, (ii) αreq,i

in requesting letters, and (iii) αrpl,i in replying to letter requests of its neighbors, given by

words formed︷ ︸︸ ︷
αw,i =

nwords,i

nmax
words,i

,

letter requests sent︷ ︸︸ ︷
αreq,i =

nreqSent,i

nmax
reqSent,i

,

letter replies sent︷ ︸︸ ︷
αrpl,i =

nreplSent,i

nreqRec,i
(1)

where nwords,i is the number of words that vi forms in the GrAG; nmax
words,i is the maximum number of words

that vi can form, i.e., nmax
words,i = |W tot

i |; nreqSent,i is the number of letter requests that vi sends to its neighbors
in G(V,E) in the GrAG; nmax

reqSent,i is the maximum number of requests that vi can send to all of its immediate
neighbors in G(V,E) in order to form all words in W tot

i ; nreplSent,i is the number of letter replies sent by vi
to its neighbors; and nreqRec,i is the number of letter requests received from vi’s neighbors.

5 MODELING AND SIMULATION RESULTS

5.1 Considerations for Simulation Parameters

Table 2 provides the simulation variables studied. Here, variables are discussed in relation to practical
(realistic) considerations for implementing the game we are modeling. The number n of players on the
lesser end (n = 11) represents smaller teams, and larger n (= 1000) simulates a game that is possible to
play, for example, by employing students from a large undergraduate course that can be on the order of
many hundreds of students. Networks are used to control player degree (number of neighbors) in order to
scale up n. For example, it is not practical for n = 100 students to all interact with each other.

The use of circle, clique, and random regular graphs means that, for a specific graph, all nodes (agents,
players) have the same number of neighbors. Hence, each node is, in a sense, a different replicate instance,
because letter assignments vary among the nodes but the numbers of letters assigned to each node in these
simulations is the same.

For the probability vector pact of action probabilities for a player, we use p̂ values in Table 2; p̂
corresponds to probabilities for actions form word, request letter, and reply to requests. Values range from

Hu, Deng, Adiga, Korkmaz, Kuhlman, Machi, Marathe, Ravi, Ren, Cedeno-Mieles, Ekanayake, Goode,
Ramakrishnan, Saraf, and Self

0.05 to 0.25, to represent a range from inactive (or more deliberate) agents to relatively active (fast thinking)
agents. This is, when p̂ = 0.05, pthink = 0.85, so that in expectation, a player is thinking—not acting—for
85% of the game time. The mid-range value of p̂ = 0.15 means that a player is thinking more than one-half
of the time (pthink = 0.55), and the greatest value for p̂ means that an agent is only thinking 25% of the
time and acting 75% of the time. We study this range to evaluate different levels of mental activity in lieu
of a cognitive model of player behavior.

The numbers n` of own letters assigned to players is designed to control interactions (along with node
degree d). The cases n` ≤ 2 force players to interact with their neighbors in order to form words when
the minimum permissible word length is three letters. A player has access to as many as (d+1)n` unique
letters (if there are no duplicate letters), if all players are given n` letters. Owned letter assignments are
done such that each player has n` unique letters; there are no duplicates.

The word corpus of 1015 words considers only 3-letter words. Admitting larger words is a subject
for further work, but is unlikely to effect our results, at least qualitatively, because of the way agents step
through CW to select words to try to form.

Table 2: Summary of parameters and their values used in simulations of GrAGs.

Parameter Description
Networks G(V,E). Circle graphs, cliques, and random regular graphs. Numbers of nodes are n = 11, 100, and

1000. Uniform degrees d of players are two and ten.
Probability vectors
for actions pact .

pact = (p f w, psreq, psrep, pthink) is the vector of probabilities corresponding to the actions in
Table 1 where the probabilities associated with a1,a2,a3, and a4 are, respectively p f w, psreq,
psrep, and pthink. These probabilities are used at each time t to select the player action at
that t. We use p̂ = p f w = psreq = psrep, where p̂ is in the set {0.05,0.10,0.15,0.20,0.25}.
Consequently, pthink = 1−3p̂. A vector pact of values is assigned to each agent.

Number n` of owned
letters.

This is the number of owned letters assigned to a player as part of initial conditions. Values
used are n` = 1, 2, 3, and 4. Owned letters for a player purposely contain no duplicates. A
value of n` is assigned to each player.

Letter assignment
process.

The initial letter assignments to players are done uniformly at random.

Shared letters. The letters that a player can share with her neighbors are the same as the owned letters. There
may be duplicate letters between pairs of players, including neighbors of an agent vi.

Duration of GrAG tg. The duration of the group anagram game is fixed at tg = 300 seconds.
Word corpus CW . The corpus of 1015 3-letter words is taken from http://www.wordfind.com/3-letter-words/.

That is, only 3-letter words are considered in simulations.
Number of runs nruns. Each simulation is composed of nruns individual dynamics instances, where each instance

starts from time t = 0, with initial conditions reset, and then the dynamics of the system are
executed for tg discrete time steps. Here, nruns = 50.

5.2 Simulation Results for GrAG

Subsections below provide insights into the effects of input variables (see Table 2) on simulation results.
Results include all 50 runs (instances) per simulation, either in the form of averages (i.e., the mean values
over all runs at each discrete time) with ± one standard deviation error bars, or boxplots of all data.
Observations of behaviors hold only for the conditions of the computational experiments (but are suggestive
of more general trends).
Aggregate effects of number of owned letters. Figure 3 shows aggregate time histories for all agents in
an 11-agent game where each agent has two neighbors, i.e., (n,d) = (11,2). Other simulation parameter
values are given in the caption. The numbers of letter requests sent by players are in Figure 3a. The
numbers of replies (with the letters) to those requests (Figure 3b) are a little less than the numbers of
requests. The numbers of words formed (Figure 3c) are still less in number than requests and replies.

Hu, Deng, Adiga, Korkmaz, Kuhlman, Machi, Marathe, Ravi, Ren, Cedeno-Mieles, Ekanayake, Goode,
Ramakrishnan, Saraf, and Self

The results indicate that there is not much difference between giving players three or four initial letters.
However, the differences for 1≤ n` ≤ 3 are large. Also, tg = 300 seconds is more than adequate for n` = 1
because performance saturates, but for n` ≥ 2, performance is still changing, although it is approaching
saturation for n` = 2.

0 100 200 300
Time

0
100
200
300
400
500

Nu
m

. R
eq

. S
en

t
nl = 1
nl = 2
nl = 3
nl = 4

(a)

0 100 200 300
Time

0
100
200
300
400
500

Nu
m

. R
pl

 R
ec

ei
ve

d

nl = 1
nl = 2
nl = 3
nl = 4

(b)

0 100 200 300
Time

0
100
200
300
400
500

Nu
m

. W
or

ds
 F

or
m

ed

nl = 1
nl = 2
nl = 3
nl = 4

(c)

Figure 3: Simulation results for all agents from an (n,d) = (11,2) graph, for action probabilities pact =
(p f w, psreq, psrep, pthink) = (0.15,0.15,0.15,0.55) and number of letters n` taking values {1,2,3,4} in turn
(see legend). Standard deviation error bars are shown in each curve, every 30 time units, so as to not
overwhelm the curves. Plots (left to right) correspond, respectively, to actions: (a) send (letter) requests,
(b) receive (letter) replies, and (c) form words. The ordinate values are the sum of all of the respective
actions across all 11 agents, so the average number of agent actions is obtained by dividing each ordinate
value by 11. Among the results shown are: when a player has only one letter (n` = 1), the actions saturate
in less than 150 seconds, but for greater numbers of owned letters, actions are taking place at the 5-minute
mark; and the differences between results for n` = 3 and 4 are small.

Effect of number of neighbors. Figure 4 shows aggregate results for two different values of numbers of
neighbors, for experiments with n = 11. For all graphs, curves for d = 2 are in blue and those for d = 10
are in green. For each degree, the solid curves correspond to n` = 2, and the dashed curves correspond to
n` = 4. Where no dashed curve is visible, it is “under” (coincident) with a solid curve.

These results are particularly interesting from the perspective of agents’ “congestion” of communications
and performance. For agent vk that is replying to requests with the desired letters, if vk has degree d = 2,
then all of her replies are going to two agents v1 and v2. If vk has d = 10 neighbors, then the replies are
being distributed across more neighbors. The main point that the plots convey is that players with large
numbers of neighbors can get bombarded with letter requests. That is, when d of a player vk is sufficiently
large, psrep for vk is sufficiently small, and psreq of vk’s neighbors are sufficiently large, then the letter
requests made of vk “pile up” because vk cannot reply sufficiently quickly to these requests. The result is
that performance, in terms of words formed, can decrease as d increases. This is why, in Figure 4, the
green curves (for d = 10) in Figure 4a for letter requests sent are at or above the blue curves (for d = 2),
but the green curves fall below the blue curves in Figures 4b and 4c for replies received and words formed,
respectively.
Performance of individual (disaggregated) players. Figure 5 disaggregates the end-of-game (tg = 300
seconds) results for n` = 3 from Figure 3, and compares player actions with optimal behavior—in terms
of numbers of actions. Optimal behavior means the best possible performance of players. See Section 4.2
for definitions of performance ratios. Performance in terms of formed word αw,i, letter requests sent αreq,i,
and letter replies sent αrpl,i are in the range [0,1] in Figures 5a, 5b, and 5c, respectively, per player. There
are clear similarities between αw,i and αreq,i, since letter requests (and replies) will make it possible to
form more words. Figure 5d makes it clear that the relatively good performances in words formed and
letter requests for Players 0 and 4 are due to the relatively lesser optimal behaviors possible (red and black
curves for these players [for requests sent and words formed, respectively] have lesser values). The blue
curve, which serves as the denominator for the data in Figure 5c, also explains these data. These data,

Hu, Deng, Adiga, Korkmaz, Kuhlman, Machi, Marathe, Ravi, Ren, Cedeno-Mieles, Ekanayake, Goode,
Ramakrishnan, Saraf, and Self

0 100 200 300
Time

0
100
200
300
400
500

Nu
m

. R
eq

. S
en

t

d = 2, nl = 2
d = 2, nl = 4
d = 10, nl = 2
d = 10, nl = 4

(a)

0 100 200 300
Time

0
100
200
300
400
500

Nu
m

. R
ep

. R
ec

ei
ve

d

d = 2, nl = 2
d = 2, nl = 4
d = 10, nl = 2
d = 10, nl = 4

(b)

0 100 200 300
Time

0
100
200
300
400
500

Nu
m

. W
or

ds
 F

or
m

ed

d = 2, nl = 2
d = 2, nl = 4
d = 10, nl = 2
d = 10, nl = 4

(c)

Figure 4: Simulation results aggregated for all agents for graphs with (n,d) = (11,2) (blue curves) and
(11, 10) (green curves), for action probabilities pact = (p f w, psreq, psrep, pthink) = (0.15,0.15,0.15,0.55), and
number of letters n`= 2 (solid curves) and 4 (dashed curves). Standard deviation error bars are shown in each
curve, every 30 time units, so as to not overwhelm the curves. Plots (left to right) correspond, respectively,
to actions: (a) send (letter) requests, (b) receive (letter) replies, and (c) form words. The ordinate values
are the sum of all of the respective actions across all 11 agents, so the average number of agent actions is
obtained by dividing each ordinate value by 11. Taken together, the plots show the interesting result that
players that have too many neighbors (so that they have more letters to select from to form words) receive
fewer letter replies and form fewer words. See the text for details.

collectively, indicate that initial letter assignments can make a big difference in performance parameters
αw,i, αreq,i, and αrpl,i.

0 2 4 6 8 10

0.
0

0.
4

0.
8

Word: d2 prob0.15 o.l.1

player

F
ra

c.
 w

or
ds

●●

●

0 2 4 6 8 10

0.
0

0.
4

0.
8

Word: d2 prob0.15 o.l.2

player

F
ra

c.
 w

or
ds

●
●●● ●

●●
●
●

●

0 2 4 6 8 10

0.
0

0.
4

0.
8

Word: d2 prob0.15 o.l.3

player

F
ra

c.
 w

or
ds

●

●●

●

●●

0 2 4 6 8 10

0.
0

0.
4

0.
8

Word: d2 prob0.15 o.l.4

player

F
ra

c.
 w

or
ds

(a)

0 2 4 6 8 10

0.
0

0.
4

0.
8

letter rqs: d2 prob0.15 o.l.1

player

F
ra

c.
 le

tte
r

rq
s

●

●

●

●

●

●

●●

●

●●

●

●

●

●

0 2 4 6 8 10

0.
0

0.
4

0.
8

letter rqs: d2 prob0.15 o.l.2

player

F
ra

c.
 le

tte
r

rq
s

●●●

●

●
●

●

●

●

●

0 2 4 6 8 10

0.
0

0.
4

0.
8

letter rqs: d2 prob0.15 o.l.3

player

F
ra

c.
 le

tte
r

rq
s

●●

●
●

0 2 4 6 8 10

0.
0

0.
4

0.
8

letter rqs: d2 prob0.15 o.l.4

player

F
ra

c.
 le

tte
r

rq
s

(b)

●

●

●

●
●

●

●●
●

●

●

●
●
●●

●
●●

●

●●●

0 2 4 6 8 10

0.
0

0.
4

0.
8

Replies Sent: d2 prob0.15 o.l.3

player

#r
pl

 s
en

t/#
rq

s
re

c

●●

●● ●

●

0 2 4 6 8 10
0.

0
0.

4
0.

8

Replies Sent: d10 prob0.15 o.l.3

player

#r
pl

 s
en

t/#
rq

s
re

c

(c)

●

●

●

●

●

● ● ● ● ● ●

Form word: n11 d2 prob0.15o.l.3

player

C
ou

nt
s

0 1 2 3 4 5 6 7 8 9 10

0
50

10
0

15
0 ● Words can form

Req can send
Req can rec
Req received

(d)

Figure 5: Performance results of individual agents relative to best possible performance for an (n,d) =
(11,2) graph, action probabilities pact = (p f w, psreq, psrep, pthink) = (0.15,0.15,0.15,0.55), and number of
letters n` = 3 assigned to each player. Plots (left to right) correspond, respectively, to actions: (a) αw,i for
words formed, (b) αreq,i for letter requests sent, and (c) αrpl,i for replies sent for letter requests. In all cases,
boxplots show results for all 50 run instances. (d) Best possible performance in terms of numbers of actions
for forming words, requests sent, replies sent (≡ requests received), and actual requests received. The black
and red curves show, for example, that player 4’s strong performance is due to the fact that it can form
relatively fewer words and request relatively fewer letters than most other players.

Average performance across agents for changes in action probabilities. Figure 6 shows the effects
of different player activity levels, implemented by altering p̂ in pact ; see Table 2. As p̂ increases, the
probabilities of each of the actions form word, request letter, and reply to request increase. The figure
shows that the probability (i.e., activity) of players has a significant effect on performance, as does the
number n` of letters assigned to players.

Hu, Deng, Adiga, Korkmaz, Kuhlman, Machi, Marathe, Ravi, Ren, Cedeno-Mieles, Ekanayake, Goode,
Ramakrishnan, Saraf, and Self

●

●
● ● ●

n11 d2

Action Probability, p̂

P
er

fo
rm

an
ce

 R
at

io

0.05 0.10 0.15 0.20 0.25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●
● ● ● ●

●
●

RplS, nl=2
RplS, nl=4
RqsS, nl=2
RqsS, nl=4
Word, nl=2
Word, nl=4

Figure 6: Average performance across all players in (n,d) = (11,2) experiments for n` = 2 and 4, and for
all pact vectors with p̂ = 0.05, 0.10, 0.15, 0.20, and 0.25 (see Table 2). Y-axis values are average values of
αw,i for form words (“Word” in green), αreq,i for letter requests sent (“RqsS” in red), and αrpl,i for replies
sent for letter requests (“RplS” in black). Player performance increases as p̂ increases and n` decreases.

6 USES OF MODELING RESULTS

Simulations results of the previous section are used to discuss refinements to game parameters of the
envisioned experimental platform and to construct hypotheses to test.

6.1 Game Specifications

Several insights from the simulation results above can be used to specify/refine game conditions. We
assume that the probabilities of player actions form word, request letter, and reply to request are in the
middle of our investigated range, i.e., pact = (p f w, psreq, psrep, pthink) = (0.15,0.15,0.15,0.55). Figure 3
suggests that a 5-minute game may be adequate for players to form words when n` ≥ 3 (that is, individual
players may form up to 20 or more words). This is not an obvious result. Individual anagram games of
a different sort, where a player unscrambles letters to form a single unique word, use a duration of four
minutes per game (Mayzner and Tresselt 1958). Figure 3, where d = 2 and n` = 3, suggests that a criterion
on d and n` to produce significant interactions among players is: (1+d)n` ≥ 9. Results in Figure 4 provide
strong evidence for the need to test different network structures. While some may contend that this is
an obvious statement, this figure suggests why testing different connectivities is important and interesting.
Figure 5 indicates that (initial) letter assignments can produce different performance among players. We
saw that for Players 0 and 4, performance was aided by the fact that they could form fewer words and
could profitably request fewer letters than other players. This is dictated by assignments of a player’s and
its neighbors’ letters. (Our ABMS can control the assignment of particular letters to particular players, but
this is not reported on here owing to lack of space.) Although not shown, results for different n (= 11,
100, and 1000) players show that numbers of actions scale linearly with n, as expected.

6.2 Illustrative Hypotheses

From the computational results of Section 5, the hypotheses in Table 3 were formulated. These could be
tested in a game platform that runs experiments according to the description in Section 3. Conditions not
stated in the hypotheses are those represented in the figures of Section 5. For the last one, we did not show
results for games with n = 100 and 1000 players owing to space limitations. Finally, the hypotheses are
quantitative rather than qualitative to provide more stringent tests.

7 CONCLUSION AND LIMITATIONS

We have described a novel GrAG. Novelty and contributions are in Sections 1.3 and 1.4. Future work includes
addressing limitations by extending the model to account for how players decide on which actions to take.
We need to report on simulations with heterogeneous conditions. Space limitations prevent presentation
of these results. Source code is available upon request from Chris Kuhlman at cjk8gx@virginia.edu.

Hu, Deng, Adiga, Korkmaz, Kuhlman, Machi, Marathe, Ravi, Ren, Cedeno-Mieles, Ekanayake, Goode,
Ramakrishnan, Saraf, and Self

Table 3: Illustrative hypotheses, formulated from the modeling results, to test in an experimental setting.

Topic Hypothesis
Game duration. A five-minute GrAG is sufficiently long to produce over 1000 total actions among players in

(n,d) = (11,2) experiments when players have n` = 3 letters.
Numbers n` of as-
signed letters.

Increasing n` from 3 to 4 results in no more than a 10% increase in numbers of actions.

Player degree d. As number of neighbors of a player increases from d = 2 to 10, numbers of letter requests
increases by 100% but the number of letter replies decreases by 100%.

Numbers of play-
ers.

As the number n of players in the game increases from 11 to 100, the numbers of actions will
increase disproportionately by 20%.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their helpful feedback. We thank our colleagues at NSSAC
and computer system administrators: Dominik Borkowski, Jason Decker, Miles Gentry, Jeremy Johnson,
William Marmagas, Douglas McMaster, and Kevin Shinpaugh. This work has been partially supported
by NSF CRISP 2.0 (Grant 1832587), DARPA Cooperative Agreement D17AC00003 (NGS2), DTRA
CNIMS (Contract HDTRA1-11-D-0016-0001), DTRA Comprehensive National Incident Management
System Contract HDTRA1-17-D-0023. The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright annotation thereon.

REFERENCES
Cadsby, C. B., F. Song, and F. Tapon. 2007. “Sorting and Incentive Effects of Pay for Performance: An Experimental Investigation”.

Academy of Management Journal 50:387–405.
Charness, G., R. Cobo-Reyes, and N. Jimenez. 2014. “Identities, Selection, and Contributions in a Public-Goods Game”. Games

and Economic Behavior 87:322–338.
Feather, N. T., and J. G. Simon. 1971. “Causal Attributions for Success and Failure in Relation to Expectation of Success Based

Upon Selective or Manipulative Control”. Journal of Personality and Social Psychology 39:527–541.
Mayzner, M. S., and M. E. Tresselt. 1958. “Anagram Solution Times: A Function of Letter Order and Word Frequency”. Journal

of Experimental Psychology 56(4):376.
Ren, Y., V. Cedeno-Mieles et al. 2018. “Generative Modeling of Human Behavior and Social Interactions Using Abductive Analy-

sis”. In ASONAM, 413–420.
Russell, D. G., and I. G. Sarason. 1965. “Test Anxiety, Sex, and Experimental Conditions in Relation to Anagram Solution”. Journal

of Personality and Social Psychology 1:493–496.
Yang, Y., L. Mao, and S. S. Metcalf. 2019. “Diffusion of Hurricane Evacuation Behavior Through a Home-Workplace Social

Network: A Spatially Explicit Agent-Based Simulation Model”. Computers, Environment, and Urban Systems 74:13–22.

AUTHOR BIOGRAPHIES
ZHIHAO HU, VANESSA CEDENO-MIELES, PARANG SARAF, are graduate students at Virginia Tech. Their email addresses
are huzhihao,vcedeno,parang@vt.edu.

XINWEI DENG is a professor in the Department of Statistics at Virginia Tech. His email address is xdeng@vt.edu.

ABHIJIN ADIGA, GIZEM KORKMAZ, CHRIS J. KUHLMAN, DUSTIN MACHI, MADHAV V. MARATHE, S. S. RAVI
are faculty in the Biocomplexity Institute & Initiative at University of Virginia. Their email addresses are abhijin,gkorkmaz,cjk8gx,
dm8qs,marathe,ssr6nh@virginia.edu.

YIHUI REN is a Research Associate at Brookhaven National Laboratory. His email address is yren@bnl.com.

SALIYA EKANAYAKE is a Postdoctoral Fellow at Lawrence Berkeley National Laboratory. His email address is esaliya@gmail.com.

BRIAN J. GOODE, NAREN RAMAKRISHNAN, NATHAN SELF are, respectively, faculty in the Biocomplexity Institute of
Virginia Tech, director of the Virginia Tech’s Discovery Analytics Center (DAC), and faculty in DAC at Virginia Tech. Their email
addresses are bjgoode,naren,nwself@vt.edu.

mailto:// {huzhihao},{vcedeno},{parang}@vt.edu
mailto://xdeng@vt.edu
mailto:// {abhijin},{gkorkmaz},{cjk8gx},\{dm8qs},{marathe},{ssr6nh}@virginia.edu
mailto:// {abhijin},{gkorkmaz},{cjk8gx},\{dm8qs},{marathe},{ssr6nh}@virginia.edu
mailto:// yren@bnl.com
mailto:// esaliya@gmail.com
mailto:// {bjgoode},{naren},{nwself}@vt.edu

	INTRODUCTION
	Background and Motivation
	Our Group Anagram Game (GrAG)
	Novelty of Our Work
	Our Contributions

	RELATED WORK
	GROUP ANAGRAM GAME (GrAG) DESCRIPTION
	MODELS and ABM ALGORITHMS
	Group Anagram Game
	Performance Parameters For Individual Players

	MODELING AND SIMULATION RESULTS
	Considerations for Simulation Parameters
	Simulation Results for GrAG

	USES OF MODELING RESULTS
	Game Specifications
	Illustrative Hypotheses

	CONCLUSION AND LIMITATIONS

