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ABSTRACT
The problem of inferring unknown parameters of a networked

social system is of considerable practical importance. We consider

this problem for the independent cascade model using an active

query framework. More specifically, given a network whose edge

probabilities are unknown, the goal is to infer the probability value

on each edge by querying the system. The optimization objective

is to use as few queries as possible in carrying out the inference.

We present approximation algorithms that provide provably good

estimates of edge probabilities. We also present results from an

experimental evaluation of our algorithms on several real-world

networks.
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1 INTRODUCTION
Background and Motivation. Due to the tremendous increase

in the use of networked social systems (e.g., Facebook, Twitter,

LinkedIn), researchers are actively studying various aspects of such

systems. In particular, the study of contagion propagation in net-

worked systems is an active area of research in many disciplines

(e.g., computer science, social science, business, economics) since

contagions can be used to model many different phenomena in-

cluding disease spread, propagation of influence and social trends

and flow of information (see e.g., [10, 29]). Many classes of diffu-

sion phenomena over networks have been studied in the literature

when the network and the associated parameters are known (e.g.,

[9, 10]). In actual social systems, many parameters of the network

(e.g., behavior characteristics of nodes, transmission probabilities

associated with edges) are not generally known. To understand dif-

fusion phenomena over such networks, and subsequently apply the

understanding to forecast, maximize influence, control the spread,

etc., it is essential to have good estimates of model parameters. For

example, for systems where the node behaviors can be captured

by appropriate threshold functions, techniques for inferring those

functions from media or other observational data have appeared in

[2, 13, 26].

In this paper, our focus is on obtaining provably good estimates

of the edge (or influence) probabilities of a given directed social

network. Researchers have studied this problem under a model

where observational data about the dynamics of the system (e.g., log

of user activities, a time-ordered trace specifying the set of nodes

influenced at each time step) is available (see e.g., [14, 27]). We

consider the problem under an active query model, where a query

specifies state values for the nodes and the response to the query

provides the state of each node at the next time step. This active

query model is appropriate for networked systems that arise in the

context of online social experiments carried out under controlled

settings (see e.g., [6, 18, 22]). We develop a precise formulation

of the edge probability inference problem under the independent

cascade (IC)model of diffusion. This diffusionmodel, whichwas first

considered in the context of interacting particle systems [9, 19], has

been widely used in the study of influence and disease propagation

(see e.g., [12, 15]). To make our algorithms scale to large social
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networks (with millions of nodes and about 200 million edges),

we also formulate a problem whose goal is to find an appropriate

subgraph of a large network so that the inference algorithm can be

applied to the smaller subgraph. This formulation exploits the fact

that in several application contexts, edges of a social network are

partitioned into classes such that edges within the same class have

the same (transmission) probability.

Summary of Results. Our results, summarized below, include

provably good approximations of edge probabilities as well as ex-

perimental evaluations using several real-world and synthetic net-

works.

(1) For the IC model, we develop a precise formulation of the edge

probability inference problem for a directed network under the

active query framework.

(2) Given a directed network and values ϵ and δ , where 0 < ϵ,δ < 1,

we present an (ϵ,δ )-approximation algorithm to infer the edge prob-

abilities ofG for the IC model. Formally, our algorithm ensures that

for every edge e , the probability that the estimated probability p̂e
differs from the actual probability pe by more than ϵpe is at most δ .
This approximation relies on two algorithmic ideas. First, it uses

a stopping criterion for Monte Carlo sampling developed in [7].

Second, to minimize the number of queries used, it uses a novel

edge coloring formulation (which we call fan-out edge coloring)

for directed graphs.

(3) In practice, edge sets of large social networks are partitioned

into classes such that all the edges in the same class have the

same transmission probability. We rely on this idea to make our

algorithms scale to very large social networks (with millions of

nodes and hundreds ofmillions of edges). In particular, we formulate

a combinatorial problem (called the Minimum Cost Covering
Subgraph or MCCS problem) to identify a subgraph which has

a small number of nodes and which contains at least one edge

from each class. We show that this problem is NP-complete but

present an approximation algorithm which provides a performance

guarantee ofO(
√
k), wherek is the number of classes. This allows us

to work with the smaller subgraphs generated by the approximation

algorithm. It should be noted that our focus is on learning edge

probabilities. We assume that a partition of the edges into subsets,

where all edges in the same subset have the same probability, is

available to our inference algorithms.

(4) We evaluate our algorithm for estimating edge probabilities

on many real-world and synthetic networks. In a first set of ex-

periments, we exploit edge labeling and use MCCS to reduce the

sizes of large networks (in terms of numbers of nodes and edges)

by several orders of magnitude, and infer edge probabilities. We

evaluate a second set of intermediate sized-networks to address

the case where there are no edge labels. Our assessments of these

methods consider accuracy of the probability estimates, number of

queries required to obtain these estimates and errors in contagion

dynamics on networks under the IC model when using true and

estimated probabilities.

Related Work. Many researchers have proposed formal models

for contagion propagation in social networks (see e.g., [5, 10, 25]).

This line of research generally assumes that all the parameters

of the underlying network are known. Recently, there has been

a considerable amount of interest in learning the parameters of

networked systems. For example, for systems where state changes

of nodes are determined by threshold values of nodes (i.e., a node

changes to state 1 only when at least a specified number of its

neighbors are in state 1), many papers have addressed the problem

of learning the node thresholds (see e.g., [2, 13, 26]). The problem

of learning influence probabilities in networks has also received

attention in the literature. For example, Goyal et al. [14] study the

problem assuming that a log of users’ actions is available. They

develop algorithms for learning the edge probabilities under a va-

riety of influence models. Saito et al. [27] consider the problem

of estimating the edge probabilities for the IC model of diffusion.

They assume that data in the form of a system trace which gives for

each time instant t , the set of nodes which changed to state 1 at t
is available. They use an algorithm based on expectation maximiza-

tion to obtain estimates of edge probabilities. Liu et al. [20] address

the probability inference problem for heterogeneous networks. Our

work differs from the previous work in that we use an active query

model (explained in Section 2) instead of observational data. An

active query model in a different context (namely, determining

users’ choices) has been studied recently in [16]. Our query model

enables us to obtain provably good estimates of edge probabilities.

Organization. The remainder of this paper is organized as follows.

In Section 2, we provide precise specifications of our active query

model and the problem of inferring the edge probabilities under

the IC model. In Section 3, we present our algorithm for the infer-

ence problem. To enable our algorithm to scale to very large social

networks, we formulate the minimum covering subgraph problem,

establish its complexity and present an efficient approximation al-

gorithm for the problem in Section 4. We report results from our

experiments (with and without finding a subgraph) in Section 5.

Conclusions and directions for future work appear in Section 6. For

space reasons, proofs of many results mentioned in the paper are

omitted; they are available in [1].

2 MODEL DESCRIPTION AND PROBLEM
FORMULATION

We assume that the underlying social network G(V ,E) is directed,
with V and E denoting the vertex and edge sets respectively. An

edge e = (u,v), where u and v are the end points of e , is directed
from u to v . In this case, u is an in-neighbor of v and v is an out-

neighbor of u. For a node u, the indegree of u (denoted by deg
in
(u))

and outdegree of u (denoted by deg
out

(u)) are respectively the

number of incoming and outgoing edges. The maximum indegree

and outdegree of a graph are denoted by ∆in and ∆out respectively.

Each directed edge is associated with a probability value; however,

these probability values are not given and the goal is to obtain

provably good estimates of those values.

We consider the independent cascade (IC) model of diffusion

(defined below). We assume that every node has a state value

from {0, 1}, where the state value 0 indicates that the node is “not

infected" (or “not influenced") and 1 indicates that the node is “in-

fected" (or “influenced"). In each time step and for each node v
whose state value is 0, certain in-neighbors of v which are in state

1 try to influence v . This is a stochastic process whose nature is
governed by the definition of the IC model (given below). A con-
figuration of the network at time t is the binary tuple comprising
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the state of every node in the network at time t . Given the config-

uration at time t , the diffusion process specified by the IC model

determines a successor configuration at time t + 1. As the system
is stochastic, the successor of a configuration need not be unique.

Independent Cascade (IC) model. Let G(V ,E) be a directed net-

work where every edge e ∈ E is associated with a (transmission or

influence) probability pe > 0. As mentioned earlier, each node may

be in state 1 (influenced/infected) or state 0. At time t , a node v in

state 0 is influenced independently by each in-neighbor u which

changed to state 1 at time t − 1 with influence probability p(u,v).
Subsequently, if the state of v changes to 1, then v influences its

state 0 out-neighbors for exactly one time step, and never changes

its state to 0.

Active query model. To estimate the edge probability values, our

query model assumes an active form of interaction with the sys-

tem. This type of query model has been studied in the literature

in several contexts, including determining node behaviors [2] and

inferring users’ choices [16]. In our model, the user issues a query

q that specifies a system configuration (i.e., the tuple of state val-

ues of all the nodes of the system) at a certain time instant; the

response to the query is a successor configuration of q determined

by the underlying stochastic process of the IC model. Formally,

given a network G, the active query model corresponds to a query

function QIC

G (·), which takes a configuration or query q as input

and returns a successor QIC

G (q) configuration of q as output. As

the successor of a given configuration q is, in general, not unique,

the system may return any successor of q that is consistent with

the underlying stochastic process. Since generating responses to

queries can be expensive, it is important to minimize the number

of queries used. For a query q and a node v , we use q(v) to denote

the 0 or 1 value assigned to v by q. We can now present a precise

definition of the problem of inferring edge probabilities under the

IC model.

Problem 2.1 (InferIC). Given a directed network G(V ,E) and
a query function QIC

G corresponding to an IC model over G, infer
the influence probability pe for every edge e ∈ E using a minimum

number of queries.

3 RESULTS FOR THE IC MODEL

Overview. We first propose an (ϵ,δ )-approximation algorithm for

the InferIC problem. The algorithm gives the following guarantee:

with probability at least 1−δ , the estimated influence probability p̂e
is at most ϵpe away from the actual probability pe for every edge e .
Next, we discuss how our algorithm compares with an optimal solu-

tion with respect to the number of queries used. We then consider

the special case of a homogeneous IC model where all edges have

the same influence probability.

Our approach. Consider a directed edge e = (u,v). Ifu is in state 1,

then it may influence v with probability pe . To estimate pe , we a
design query q in such a manner that q(u) = 1, q(v) = 0 and u is

the only in-neighbor of v that is in state 1. Suppose q′ = QIC

G (q);
that is, q′ is the successor of q returned by the system. Then, q′(v)
is a 0 − 1 random variable with Pr(q′(v) = 1) = pe . When query q
is repeated N times, we obtain in N independent samples of q′(v)

which can be used to estimate pe . To determine a suitable value of

N , we employ the stopping criterion discussed in [7].

To minimize the number of queries used, we utilize a specific

edge coloring scheme which enables us to simultaneously estimate

the influence probabilities of a group of edges. Suppose each edge

in E is assigned a color from {1, 2, . . . ,τ } for some positive inte-

ger τ . (The coloring must satisfy certain conditions which will

be discussed later in this section.) This coloring induces a parti-

tion {E1,E2, . . . ,Eτ } of E, where Ei is the subset of edges assigned
color i , 1 ≤ i ≤ τ . Then, query qi is constructed as follows: for

every (u,v) ∈ Ei , set q(u) = 1 and the rest of the vertices of the

graph to 0. We repeatedly try these τ queries until the stopping

criterion is satisfied for each edge in that query, thus ensuring the

accuracy of the estimate for every edge.

Stopping rule. Suppose Z1,Z2, . . . are i.i.d. random variables dis-

tributed according to Z in the interval [0, 1] with mean p. Dagum et

al. [7] proposed an (ϵ,δ )-approximation algorithm, which we refer

to as StoppingRule (Algorithm 1), to estimate the value p with a

near-optimal number of samples. Steps 2 and 9 of this Algorithm

use the function T (x ,y) defined by

T (x ,y) = 4(e − 2) log(2/y)/x2. (1)

The following theorem from [7] shows the approximation quality

of the estimate and the number of samples used.

Algorithm 1: StoppingRule(ϵ,δ , {Z1,Z2, . . .}) of [7]
Data: Values ϵ,δ ∈ (0, 1) and i.i.d. random variables Z1,Z2, . . .

according to Z in the interval [0, 1] with mean p
Result: Estimate p̂ of p

1 /*Step 1*/

2 Let ϵ ′ = min(1/2,
√
ϵ), T1 = 1 + (1 + ϵ ′)T (ϵ ′,δ/3);

3 Initialize N = 0, S = 0;

4 while S < T1 do
5 N = N + 1, S = S + ZN ;

6 end
7 p′ = T1/N ;

8 /*Step 2*/

9 Let T2 = 2(1 +
√
ϵ)(1 + 2

√
ϵ)(1 + log(3/2)/log(2/δ ))T (ϵ,δ );

10 Let N ′ = T2ϵ/p
′
and S = 0;

11 for i = 1, . . . ,N ′ do
12 S = S + (ZN+2i−1 − ZN+2i )

2/2;

13 end
14 ρ ′ = max(S/N ′, ϵp′);

15 /*Step 3*/

16 Let N ′′ = T2ρ
′/p′2 and S = 0;

17 for i = 1, . . . ,N ′′ do
18 S = S + ZN+N ′+i ;

19 end
20 p̂ = S/N ′′

;

Theorem 3.1. Let Z be any random variable distributed in [0, 1].

Let µz = E[Z ] > 0 be the mean of Z , σ 2

Z be the variance of Z

and ρZ = max{σ 2

Z , ϵµZ }. Let µ̃Z be the approximation produced by
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Algorithm 1 and let NZ be the number of experiments run by the

algorithm with respect to Z for input parameters ϵ and δ . Then (i)

Pr[µZ (1 − ϵ) ≤ µ̃Z ≤ µZ (1 + ϵ)] ≥ 1 − δ and (ii) there is a universal

constant c ′ such that E[NZ ] ≤ c ′T (ϵ,δ ) ρZ /µ
2

Z . □

From the above theorem, it can be seen that the estimate p̂ pro-

duced by Algorithm 1 satisfies Pr[|p̂ − p | > ϵp] ≤ δ ; further, the
number of samples used is within a constant factor of the minimum

number of samples required in expectation.

Fan-out edge coloring.The goal is to obtain a partition of the edge
set E into {E1,E2, . . . ,Eτ } (for some τ ), where Ei has all the edges
with color i (1 ≤ i ≤ τ ). Further, each subset Ei in the partition

must satisfy the following condition: for any e = (u,v) ∈ Ei , v
does not have any other incoming edge with color i and v does

not have any outgoing edge with color i . In such a coloring, any

color class induces a graph which is a collection of stars with edges

“fanning out” from a central vertex. Hence, we refer to this as a

“fan-out edge coloring". Once we have such a coloring, the key idea

is that one query is sufficient to estimate the probability for all the

edges in the same color class. For each color class Ei (1 ≤ i ≤ τ ),
such a query qi can be constructed as follows. Let Yi ⊆ V be the

subset of nodes such that for each node u ∈ Yi , there is an outgoing

edge (u,v) ∈ Ei . For each node u ∈ Yi , we set qi (u) = 1; for all

other nodes w ∈ V − Yi , we set q(w) = 0. An example of fan-out

edge coloring and the construction of queries from the coloring are

presented in Figure 1.

1

2

3
4

56

7

Queries:
q1: q1(2) = q1(3) = q1(7) = 1
q2: q2(2) = q2(6) = 1
q3: q3(1) = q3(4) = 1
If not specified, then, qi(v) = 0.

Forbidden configurations
in a color class

v, v′
u u′

v, u′
u v′

Figure 1: The constraints for fan-out edge coloring, an example of
valid coloring and the resulting queries.

We now describe a method to realize a fanout edge coloring.

We first construct an undirected graph EG from G as follows. The

vertex set of EG is in one-to-one correspondence with E, the edge
set of G. For two edges e = (u,v) and e ′ = (u ′,v ′) in E, their
corresponding vertices in EG are adjacent iff either (i) v = v ′

or

(ii) v = u ′ (see Figure 1). Thus, in EG , two nodes are adjacent iff

the corresponding edges in E cannot be assigned the same color.

Hence, any proper vertex coloring of EG corresponds to an edge

coloring of G that satisfies the conditions for a valid fan-out edge

coloring mentioned above. We note that EG is a variant of the well-

known line graph defined for an undirected graph. Further, a simple

greedy coloring strategy based on Brooks’s theorem [31] can be

used to color EG with at most ∆(EG ) + 1 colors, where ∆(EG ) =
maxe=(u,v)∈E deg

in
(u) + deg

in
(v) + deg

out
(v) − 1.

Our algorithm ApproxInferIC, which uses Algorithm 1, is de-

scribed in Algorithm 2. The algorithm first constructs a fan-out

edge coloring of E as discussed above. It then constructs a query

qi for each color class i and repeatedly obtains a successor of qi .
The number of repetitions is determined using Algorithm 1. We

can now show that Algorithm 2 indeed provides a provably good

estimate of the true probability for each edge.

Algorithm 2: ApproxInferIC(G,QIC

G , ϵ,δ )

Data: Directed graph G(V ,E), query function QIC

G which

returns a successor of the input query q and values

ϵ,δ ∈ (0, 1).

Result: For every e ∈ E, an estimate p̂e of the influence

probability pe
1 Construct a fan-out edge coloring {E1, . . . ,Eτ } of E;

2 for i = 1 to τ do
3 /*Construct query qi */

4 qi = 0; /*first set every vertex state to 0 in qi */

5 for e = (u,v) ∈ Ei do
6 qi (u) = 1;

7 end
8 /*Query until stopping criterion is satisfied*/

9 Initialize N = 0, ∀e ∈ Ei , Se = ∅;

10 while ∀e ∈ Ei , StoppingRule(ϵ,δ/|E |, Se ) has not

terminated do
11 q′N = QIC

G (qi );

12 ∀e = (u,v) ∈ Ei , Se = Se ∪ q′N (v);

13 N = N + 1;

14 end
15 end
16 ∀e ∈ E, p̂e is the output of StoppingRule(ϵ,δ/|E |, Se ).

Theorem 3.2. Let G(V ,E) be a directed graph, E be a fan-out

edge coloring of G with τ colors and ϵ,δ ∈ (0, 1). For any indepen-

dent cascade model defined over G, under the active query model,

ApproxInferIC estimates the influence probabilities with the follow-

ing guarantees: (i) Pr

(∀e ∈ E, |p̂e − pe | < ϵpe
)
≥ 1 − δ , where

for an edge e , pe and p̂e are the actual and estimated influence

probabilities respectively. (ii) The expected number of queries is at

most cτT (ϵ,δ/|E |)ρ/pmin where c is a positive constant, pmin =

mine ∈E {pe } and ρ = max(pmin, ϵ).

Proof. We recall that each pe > 0. First, we show that the

algorithm satisfies the following condition for each edge e .

Pr(|p̂e − pe | > ϵpe ) < δ/|E | . (2)

Let e = (u,v), and let e ∈ Ei . By definition, qi (u) = 1 and qi (v) = 0.

Let q′ = QIC

G (qi ). By the definition of the fan-out coloring, e is the
only incoming edge ofv in Ei , and therefore, u is the only neighbor

of v whose state is 1 in qi . Hence, q
′(v) = 1 with probability pe

and 0 with probability 1 − pe . Note that the repetitions of qi are
independent of each other. Therefore, by Theorem 3.1, the estimate

of StoppingRule(ϵ,δ/|E |, Se ) satisfies Equation (2). We now use
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the union bound [23] to prove Part (i) of Theorem 3.2.

Pr

(∃e ∈ E, |p̂e − pe | > ϵpe
)
≤

∑
e ∈E

Pr

(
|p̂e − pe | > ϵpe

)
≤

∑
e ∈E

δ/|E | = δ .

Nowwe prove Part (ii) of the theorem. From Part (ii) of Theorem 3.1,

for a random variableZ taking values in [0, 1], with meanp and vari-
ance σ 2

, the expected number of queries required by the Stoppin-

gRule for (ϵ ′,δ ′) is at most f (p, ϵ ′,δ ′) = cT (ϵ ′,δ ′)max(σ 2, ϵp)/p2.
Since, in our case, Z is a 0 − 1 random variable, it follows that σ 2 =

p(1 − p). Also, it can be verified that when p1 > p2, for any ϵ
and δ satisfying 0 < ϵ,δ ≤ 1, f (p1, ϵ,δ ) < f (p2, ϵ,δ ); that is, the
edge that requires the most number of repetitions is the one with

the minimum influence probability pmin. Therefore, the number

of times a query must be repeated is at most cT (ϵ,δ/|E |)ρ/pmin in

expectation, for some constant c > 0. Since there are at most τ
distinct queries, the expected total number of queries used is at

most cτT (ϵ,δ/|E |)ρ/pmin. □

Bounds on the optimal number of queries. Dagum et al. [7]

show that for a single random variable, the expected number of

samples used by the stopping rule algorithm (Algorithm 1) is within

a constant factor of the optimum expected value. For the InferIC

problem, there are two factors that influence the number of queries

required: (i) network structure which influences the total number

of distinct configurations that can be used for querying, and (ii) the

distribution of edge probabilities that determines how many times

each query is repeated. The interplay between these two factors

makes it challenging to obtain good bounds on the number of

queries. Theorem 3.2 gives an upper bound for the optimal number

of queries.

For the lower bound, under the assumption that an algorithm

must infer the probability of each edge independently, the number

of distinct queries required is at least ∆in, the maximum in-degree of

the network. This is because, a vertex with in-degree = ∆in has that

many incoming edges which must be evaluated in distinct queries.

Suppose pmax is the maximum edge probability in the IC model.

Then, every query must be repeated at least c ∆inT (ϵ,δ/|E |)ρ/pmax

times for some constant c , where T is the function defined in Equa-

tion (1).

Uniform probability. When all the edges have the same proba-

bility p, the number of queries can be substantially reduced. Firstly,

we need not consider all the color classes. It is enough to just use a

color class with the maximum number of edges. Secondly, in every

query, we obtain s samples of the same random variable, where s is
the number of edges in the corresponding color class. Therefore,

using a proof similar to that of Theorem 3.2, the expected number of

queries used can be seen to be at most
cT (ϵ,δ/ |E |)ρ

p |Emax |
, where Emax is

a color class with the maximum number of edges. If the number of

colors is τ , note that |Emax | ≥ |E |/τ . Hence, the number of queries

is at most
cτT (ϵ,δ/ |E |)ρ

p |E | , which is 1/|E | times the upper bound for

the non-uniform probabilities case.

4 MINIMUM COVERING SUBGRAPH
PROBLEM

4.1 Motivation for Considering Subgraphs
While the algorithm discussed in the previous section provides a

good performance guarantee, it is difficult to use it directly with

very large social networks with several million nodes and about 200

million edges. The reason is that with a large number of edges and

the number of times a query must be repeated (for each edge) to ob-

tain the desired performance guarantees (in terms of the parameters

ϵ and δ ), the required number of queries to be tried is prohibitively

large. (One can get an idea of this from the experimental results

in Section 5.3 for smaller graphs for which the number of edges

varies from about 84,000 to about 940,000.) To ensure scalability

of our algorithm, we exploit a feature of social networks that is

commonly present in practical epidemic and social simulations. In

these simulations, the edges of the social network are partitioned

into a certain number of classes, and all the edges within the same

class have the same (transmission) probability value. Such partition-

ing schemes rely on the fact that each edge in the social network

represents a type of interaction among the two individuals corre-

sponding to the end points of the edge, and each interaction type

can be modeled by a single probability value. A good discussion

on why interactions and degrees of influence can be grouped and

modeled in this manner appears in [8, 24, 28]. The interaction types

are generally based on node and edge attributes (e.g., ages of the

individuals, the duration of interactions), and the number of types

of interactions is much less than the number of edges in the net-

work. Thus, instead of considering a very large social network, one

can consider a subgraph which has at least one edge for each type

of interaction. The inference algorithm under the IC model from

the previous section can be applied on the subgraph and the results

can be translated to the larger social network. In Section 5, we

describe a scheme that we used in our experiments to partition the

edge set into classes. In the next subsection, we provide a precise

formulation of the subgraph problem, establish its complexity and

present a provably good approximation algorithm for the problem.

4.2 Problem Definition and Results
As mentioned above, we want to find a subgraph G ′

of a given

social network G so that G ′
contains all the edge types that are in

the larger network. To make the problem formulation and analysis

easy to understand, we will define this problem for undirected

graphs. (The directions of the edges don’t play a role in deciding

which edges are chosen.) In our experiments, however, we used

directed graphs. A general version this problem can be formulated

as follows.

Minimum Cost Covering Subgraph (MCCS)

Instance: An undirected graph G(V ,E), a nonnegative cost c(v) for
each node v ∈ V , a partition of the edge set E into k classes E1, E2,
. . ., Ek and a budget B ≤

∑
v ∈V c(v).

Question: Is there a subset V ′ ⊆ V such that the total cost of the

nodes in V ′
is at most B and the subgraph G ′(V ′,E ′) induced on

V ′
contains at least one edge from each class?

The following result points out that MCCS is unlikely to be

solvable efficiently.
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Theorem 4.1. MCCS is NP-complete even when the underlying

graph is bipartite and the cost of each node is 1.

Proof. (Idea) We prove the NP-hardness through a reduction

from Minimum Set Cover (MSC) problem which is known to be

NP-complete [11]. The details appear in [1]. □

Theorem 4.1 shows that the MCCS problem is NP-hard even

when all the nodes have a cost of 1; that is, the cost of the subgraph

G ′
is the number of nodes in G ′

. For this version, we now present

an approximation algorithm which provides a performance guar-

antee of O(
√
k), where k is the number of edge classes. In other

words, the number of nodes in the subgraph chosen by Approx-

MCCS is always within the factorO(
√
k) of the number of nodes in

an optimal subgraph. The details of this approximation algorithm,

which we refer to as Approx-MCCS, appear in Figure 3. The fol-

lowing theorem, whose proof appears in [1], shows the worst-case

performance guarantee provided by Approx-MCCS.

Algorithm 3: Approximation Algorithm for MCCS

Input :An undirected graph G(V ,E), a partition of the edge

set E into k classes E1, E2, . . ., Ek .
Output :A subgraph G ′(V ′,E ′) of G such that E ′ contains at

least one edge from each class Ei (1 ≤ i ≤ k) and the

number of nodes in V ′
is as small as possible.

1 Let C = V ′ = ∅. (Note: C is the set of classes of edges from

which at least one edge has been chosen and V ′
is the subset

of nodes in the resulting subgraph G ′
.)

2 while (|C | < k) do
3 Find a node v such that among all the nodes in V , the set

of edges incident on v has the largest number of new

classes which are not in C .

4 For each new class of edges, choose one edge from that

class incident on v and add it to E ′.

5 Update C by adding the new classes of edges chosen in

Step 4.

6 Add v and the other end points of the edges chosen in Step

4 to V ′
.

7 end
8 Output the subgraph G ′

of G induced on V ′
.

Theorem 4.2. For any instance of MCCS given by a graphG(V ,E)
where the number of classes into which the edge set E has partitioned

is k and the cost of each node is 1, Algorithm Approx-MCCS provides

a performance guarantee of O(
√
k). □

5 EXPERIMENTAL RESULTS
5.1 Overview
Set 1 experiments. We report on two sets of experiments. In the

first set, we start with larger synthetic populations, and generate

labeled directed networks from them with 10
5
to 10

6
nodes and 10

6

to 10
8
edges (see Table 1). We then specify an edge labeling process

and use Algorithm 3 to produce much smaller subgraphs that pre-

serve the edge labels from the original graphs. These operations

are summarized in the top row of Figure 2, and will be explained

below. Each edge label corresponds to an edge probability. We use

Algorithm 2 to compute fanout edge colorings and estimated edge

probabilities on these subgraphs, and map the results back to the

larger graphs. These operations are summarized in the second and

third rows of Figure 2, and will be explained below. This entire

process demonstrates how to take large labeled networks, generate

smaller networks, analyze them, and map the results back to the

original large network. That is, this process demonstrates a scalable

approach to inferring edge probabilities under the IC model.

Table 1: Networks used in our experiments and their properties.
Set 1 networks are in rows 1 through 3. Set 2 networks are in rows 4
through 8. To conserve space, we have provided ranges of values
for some network families in Set 2. Fan-out coloring is not appli-
cable (N/A) to Set 1 networks because we perform the coloring on
subgraphs.

Network
Properties

n |E | ∆in, ∆out Fanout(τ )

NRV 152,661 8,301,322 772 N/A

Miami 2,165,398 108,618,252 846 N/A

Seattle 3,405,279 197,374,320 892 N/A

Enron 33,696 361,622 1,383 1,393

Epinions 75,877 811,478 3,044 3,050

Slashdot0811 77,360 938,360 2,539 2,540

Erdős-Rényi

(5)

70,000 ≈ 84K 29,28-31 30-34

Barabási-

Albert (5)

70,000 839928

879-

1273

880-

1279

Set 2 experiments. In the second set of experiments, we use unla-

beled networks; these networks are in rows 4 through 8 of Table 1.

Because there are no explicit labels, each edge is treated as possess-

ing a unique label. Hence, we operate on the original networks;

consequently, we omit the operations in the first row of Figure 2

and execute the procedures in the second and third rows. While

these networks are much smaller than the networks of Set 1, they

are bigger than the subgraphs that we operate on in Set 1, and hence

represent a different kind of scalability assessment of Algorithm 2.

Types of experimental analyses. In both sets of experiments,

we evaluate Algorithm 2 using two performance measures: (i) the
quality of the inferred model and (ii) the total number of queries

used to obtain the model. Further, the quality in (i) is assessed in

two ways: (a) how close the estimated probabilities are to the actual

model and (b) how IC (contagion) dynamics on networks compare

when using true versus estimated edge probabilities. Due to the sto-

chastic nature of Algorithm 2, for each combination of IC model, ϵ
and δ , we obtained 10 estimates of the IC model probabilities. All

networks in this study are taken as directed.

5.2 Large Graph Experimental Results
The starting point for this work is step 1 of Figure 2, andwe progress

through step 5 in generating and evaluating different networks.

Labeled network G generation. The networks in the first three

rows of Table 1 are analyzed in this section. We explain the net-

work generation process, which is the first row of Figure 2. These
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Figure 2: Workflow for experiments per graph of Table 1. The first
five steps produce the directed graphs G , G′ and G′′ from synthetic
populations, and are applicable to the first set of experiments. The
last nine steps operate on graphs to infermodel properties, compare
true and estimated IC models (i.e., edge probabilities), and compare
dynamics on networks through simulation and are applied to the
networks in both sets of experiments. This workflow uses the pa-
rameter values in Table 2.

networksG , which have been used to make epidemic and economic

assessments to inform public policy [4, 21], are constructed from

synthetic human populations that have per-person attributes such

as age, gender, family composition, and home location, and a set of

daily activities (e.g., go to work, go to school). See [3] for population

construction details.

To construct edge labels, we are guided by the influence literature,

where age and context affect how individuals influence each other.

For example, the degree of influence on a person by others changes

between ages 10 to 30 [24, 28], although there are clearly additional

complicating factors [8]. Furthermore, a person’s interactions with

others vary with context [30], which we represent through activity

types of individuals’ activities. We first bin the ages of people in the

population in 10-year increments per row 2 of Table 2. Then, people

in a population can have any number of activities of the six types,

as specified in the third row of Table 2. A network G is induced on

the population in the following way: there is an undirected edge

{n1,n2} between humans n1 and n2 if they are co-located (in the

same room of the same building during an activity) and the times of

their visits to the location overlap. Each undirected edge produces

two directed edges. For our purposes, we specify a 4-tuple as an

edge label for the directed edge (n1,n2); this is shown in the fourth

row of Table 2. The set of all possible edge labels is denoted by L,
and we let nℓ = |L|. Our methods are agnostic to the particular

form of an edge label.

Unpruned subgraph G ′ generation. For each network, we con-

struct a subgraph according to Algorithm 3. We call this the un-

pruned subgraph, designatedG ′
. The intuition behind this subgraph

is as follows. Each edge label in L in the original graph represents a

corresponding edge probability in the IC model. Our goal is to deter-

mine these probabilities at a minimal cost. To do this, we identify a

Table 2: Summary of the parameters and their values used in the experi-
ments. These are used in conjunction with Figure 2.

Parameter Description
Networks

G .

Networks (graphs and subgraphs) in Table 1.

Age bins. Nodes in labeled graphs are humans. Ages are binned [0,9],

[10,19], [20,29], . . ., [80,89], 90+. This gives 10 age bins.

Activity

types.

Humans can have six different activity types: home, work,

school, college, shopping, other [3].

Edge label. For directed edge (n1, n2), from node n1 to node n2, the
edge label is the 4-tuple (activity type of n1, activity type

of n2, age bin of n1, age bin of n2).
True edge

probabili-

ties.

These are edge probabilities for the IC model. Set 1 experi-

ments: pe values assigned from {0.1, 0.2, 0.3,

. . . , 0.8, 0.9}. Set 2 experiments: {0.1, 0.2, . . . , 0.5}.

Estimated

edge prob-

abilities.

These are edge probabilities for the IC model produced by

Algorithm 2.

True in-

stance,

ti .

For each network G′
and G′′

, there are five independent

probability assignments made to edges, called true prob-

abilities, to account for stochasticity. For each edge label,

a true probability pe is assigned uniformly at random, for

each instance. Values for instances are labeled 0 through 4.

Epsilon, ϵ . Used in Algorithm 2 that estimates edge probabilities; three

values are used: ϵ = 0.1, 0.3, 0.5.

Delta, δ . Used in Algorithm 2 that estimates edge probabilities; three

values are used: δ = 0.1, 0.3, 0.5.

Estimated

solutions,

te .

For each assignment of true edge probabilities, ten esti-

mated solutions are computed according to Algorithm 2 to

account for stochasticity. We average results over all ten

instances.

small subset of nodes ofG such that among all of the edges between

pairs of these nodes, there is at least one edge with each label from

L. This enables us to determine the probability corresponding to

each edge type. For simplicity, we assume the cost of each node to

be 1 so that the goal is to produce a subgraph with a small number

of nodes. Also, for the specified nodes, we cannot intervene into

the system; e.g., we cannot remove edges (interactions) between

pairs of nodes, even when these edges have redundant labels, be-

cause we must not disrupt the interactions among people. This

is called the non-intervention condition. The fanout coloring is

used precisely to deal with this constraint, providing a method for

specifying system configurations to query.

There are several additions to the implementation of Algorithm 3

in producing G ′
from G. First, both G and G ′

are directed. Second,

when selecting nodev , after the first criterion of selecting a node in-
cident on the greatest number of labels yet to be covered, we prefer

out-edges fromv rather than in-edges because this can enable more

efficient queries: all out-edges from v can be evaluated simultane-

ously by setting all of the corresponding in-nodes on these edges to

state 0. We break ties by selecting a node with the minimum number

of edges. The last criterion is to minimize the number of additional

edges introduced intoG ′
(that may have redundant labels). After

selecting a nodev and its neighbors that contribute new edge labels

toG ′
, all edges among these nodes, and between these nodes to the

existing nodes of G ′
are formed. This is to satisfy the criterion to

not intervene in the system G ′
by removing interactions.
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Pruned subgraph G ′′ generation. There is one more step. We

may be able to prune edges from G ′
. A node is critical if it is

incident on an edge that is the only representative of a label in G ′
.

If a node is only critical as an in-node (i.e., as v in directed edge

(u,v)), then any edge for which v is an out-node (i.e., v in (v,u))
can be deleted, because it is redundant. Similarly, for nodes that are

only critical as out-nodes, all incoming edges can be removed from

G ′
. The insight for critical out-nodes is as follows. These nodes will

be set to state 1 in some queries to determine their effect on their

corresponding in-neighbors, to infer those edge probabilities. They

never need to be set to state 0 and used to determine the probability

on an incoming edge because there is another edge in G ′
that can

be used to infer this probability. The same intuition applies for

in-nodes. In this way, we prune G ′
, producing the pruned graph

G ′′
. This process only removes edges; no nodes are removed. Also,

this process does not violate our non-intervention condition above:

these edges are removed because we will never set the out-nodes

of these edges to state 1 in any query, so that they will not be used

to infer edge probabilities. A similar argument holds for in-nodes.

Results on generating labeled subgraphs. Table 3 shows our

results on generating subgraphs G ′
and G ′′

. The number nℓ of

labels in G for each network is shown in the rightmost column of

that table. The numbers of nodes in these networks are far less

(about 5× less) than 2nℓ ≈ 900, which is the number of nodes

required if nℓ edges with unique labels formed a perfect matching.

Assuming unit cost per node in Algorithm 3, this is a roughly 5×

cost savings. Further, the pruning process reduced the number of

edges in G ′′
compared that of G ′

, by about 17%. In turn, this will

reduce the number of queries for inferring edge probabilities.

Table 3: Results on subgraphsG′ andG′′ generatedwithAlgorithm3
based on the labeling of the directed networks in Set 1 of Table 1.
The subgraphs are 104× to 10

6× smaller than the original graphs, in
terms of numbers of edges. The number of edges in G′′ is further
reduced by pruning edges in G′. The numbers of edge labels nℓ are
the same for the original graphs.

Network
Properties

n |E′ |, |E′′ |
|E′ |

nℓ
,
|E′′ |

nℓ
∆′
,∆′′

Fanout
′
,

Fanout
′′

nℓ

NRV 193 792, 659 1.74, 1.45 70, 66 36, 32 456

Miami 172 872, 731 1.82, 1.53 82, 78 42, 38 479

Seattle 165 850, 698 1.78, 1.46 86, 79 44, 37 477

The performance of Algorithm 3 is shown in Figure 3. This

figure shows that for all three networks, all nℓ edge labels can be

covered by selecting nodes in about 20 iterations of the while loop

in Algorithm 3 to produce G ′
. The first couple of iterations reduce

the number of uncovered edge labels by about 50%, with asymptotic

progress thereafter.

Note that the results in Table 3 and Figure 3 are for evaluating

the top row in Figure 2. We now turn to evaluating the IC model

inference, the second and third rows of Figure 2.

Results on comparing true pe and estimated p̂e edge proba-
bilities in IC model. This experiment covers steps 6 through 12

of Figure 2. The parameters evaluated begin with the True edge

probabilities in Table 2. A true edge probability in {0.1, 0.2, . . . , 0.9}

Figure 3: Progress in covering
edges and their labels in G to
form unpruned subgraphs G′,
i.e., progress in reducing the
fraction of labels uncovered
(Frac. Labels Unc.).

is assigned to each edge label inG ′
andG ′′

. Fanout edge coloring is

performed onG ′
andG ′′

, and Algorithm 2 is used to estimate edge

probabilities for the five different true edge probability instances ti ,
and for all nine combinations of (ϵ,δ ). Because Algorithm 2 is sto-

chastic, we generate 10 estimated edge probability p̂e solutions for

each combination of (G, ti , ϵ,δ ) of Table 2. Note that this algorithm
is edge-label unaware, so that each edge’s probability is estimated

independently. Thus, while there is a unique mapping from edge

label to pe , there is no unique mapping from edge label to p̂e . To
create this latter mapping, we average the computed p̂e values on

edges that have the same label. We then use these mappings to

produce edge probabilities (pe and p̂e ) for all edges in the first three

original networks G of Table 1. We will discuss the larger (origi-

nal) networks below momentarily. Now, we provide results for the

comparisons of pe and p̂e , and for numbers of queries.

Figure 4 provides average absolute errors, computed by averag-

ing values of |pe −p̂e | across all edges, as a function of ϵ . These data
points, represented as squares, have values around 0.02. That is,

the average error between true and estimated probabilities is quite

small, considering thatpe ∈ [0.1, 0.9]. However, the maximum error

for an edge can be large—roughly 0.8 in this figure. Theses results

indicate that while the maximum error in estimated probability can

be large, most probability estimates are in very good agreement

with the true probabilities, because the average absolute error is

quite small. We consider probabilities onG ′′
(andG ′

) because these

are the graphs on which the edge probabilities are estimated.

Figure 4: Average absolute er-
rors |pe − p̂e | (squares) across all
subgraph edges and maximum
absolute errors (circles) across
all edges, as a function of ϵ , for
δ = 0.5. Results are qualita-
tively similar for other values of
δ . These results were generated
on G′′; results are similar for G′.

Figure 5 shows forG ′′
of Miami and Seattle networks the number

of queries used to achieve the level of accuracy in p̂e conveyed by ϵ
and δ . We note that as ϵ increases the numbers of queries decrease,

and for a fixed ϵ , the numbers of queries decrease as δ increases.

Results forG ′′
of NRV are similar. These results make for interesting

comparisons with the graphs in Set 2 as discussed in Section 5.3.

Results on comparing simulations on networks using true
pe and estimated p̂e edge probabilities: a usage scenario. To
evaluate the effects of pe and p̂e on population dynamics, we run

simulations on the large NRV, Miami, and Seattle networks of Ta-

ble 1. We used the following combinations of (ϵ,δ ) values: (0.1, 0.1),
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Figure 5: The number of queries required to compute edge probabil-
ity estimates. The numbers of queries decrease as ϵ and δ increase.
The results for NRV are similar to those for Miami and Seattle.
(0.3, 0.3), and (0.5, 0.5). For each (G , p, ϵ , δ ) 4-tuple (where p indi-

cates whether true pe or estimated p̂e probabilities are used), we

run 100 diffusion instances; the initial condition for each run is that

one randomly-chosen node is in state 1 and all others are in state 0.

The seed node for run j (1 ≤ j ≤ 100) is the same for all (G , p, ϵ , δ ).
Results are shown in Figure 6 for the Miami network. Figure 6(a)

shows the cumulative fraction of nodes in the network that reach

state 1 as a function of time. The three curves that each use esti-

mated edge probabilities are in excellent agreement with the curve

generated with true probabilities; the curves overlap. In Figure 6(b),

we assess the fraction of nodes changing to state 1 at each time step,

and compare these values from the simulations using estimated

probabilities to those generated in simulations with the true prob-

abilities. The errors are small—about 1% or less in the predicted

fraction of newly infected nodes as a function of time—with the

largest errors corresponding to the greatest spreading rate of the

contagion. The plots for the other two networks are similar. This

use case illustrates how inferred threshold systems can be used to

produce real-world predictions of contagion dynamics.

Figure 6: (a) Comparison of agent-based simulation results, using
the ICmodel per agent, for true edge probabilities, versus estimated
edge probabilities for the (ϵ, δ ) combinations in the legend. It shows
the cumulative fraction of nodes (agents) in theMiami network that
are infected/activated as a function of time. It can be seen that p̂e val-
ues produce contagion dynamics results similar to those produced
by pe . Each curve is the average of 100 simulation instances. Vari-
ances at each time, for the 100 simulations, are very small and are
not shown for clarity. The largest variance over all data is 0.028 (at
t = 6); the greatmajority of variance values are < 10

−4. (b) Plot of ab-
solute error in number of new infections/activations per time unit;
hence, these data are temporal errors in simulation results. These
errors are small: less than 1% in the fraction of infected/activated
nodes.

5.3 Small Graph Experimental Results
The experiments were performed on two sets of synthetic networks

and three real-world networks [17], all of comparable size. They

are listed in the last five rows of Table 1. Among the synthetic

networks, one set consists of five replicates of directed Erdős-Rényi

graphs. The other set has five replicates of the Barabási-Albert

graph; each replicate was obtained by first constructing an undi-

rected graph with 70K nodes and average degree 6, and then replac-

ing each edge with a pair of bidirectional edges. We used the same

approach to obtain directed versions of the real-world networks.

For space reasons, we present representative results for selected

networks. Other networks exhibit similar behavior. For our exper-

iments, each IC model corresponding to a network was obtained

by drawing the edge probabilities uniformly at random from the

discrete set {0.1, 0.2, 0.3, 0.4, 0.5}. For each network, we considered

five replicates of the IC model. It should be noted that the probabil-

ity inference algorithm (Algorithm 2 in Section 3) was run on these

graphs directly; we didn’t use the algorithm to find a subgraph

(Algorithm 3 of Section 4).

Fan-out edge coloring. The number of colors used τ is listed in

Table 1. In all cases, the quantities τ and ∆in + 1 were very close;

the maximum difference between τ and ∆in + 1 was 9. Recalling the

discussion on the optimal number of queries required (Section 3), we

note that in practice the approach of constructing the line graph EG
and using the greedy vertex coloring strategy seems to yield near-

optimal results.

Accuracy of the estimates. In Figure 7(a), we compare the esti-

mated influence probabilities with the reference IC model using

two measures, namely mean absolute error (boxes) and maximum

error (vertical lines). Here, the error corresponding to an edge prob-

ability p and its estimate p̂ is |p̂ − p |. For each (ϵ,δ ) pair, the mean

absolute error is much lower than ϵ ; it is roughly 0.1ϵ . Also, we
observe that even the maximum error is comparable to ϵ , indicating
that the estimates are much more accurate than the performance

guarantees given by our theoretical results even for high values

of δ . Also, we did not see much variation across networks since

network structure has no role to play in this analysis. (Network

structure only affects the number of queries required.)
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Figure 7: (a) The accuracy of the estimated models and (b) the
number of queries required to obtain these estimates. The re-
sults shown here for Slashdot0811 are representative of the re-
sults for all networks. In (b) A = 3τT (ϵ, δ/ |E |)ρ/pmin and B =
∆inτT (ϵ, δ/ |E |)ρ/pmax, the upper and lower bounds for the expected
number of queries respectively.

Number of queries required. In Figure 7(b), the average num-

ber of queries required to infer the given absolute model for dif-

ferent ϵ,δ values is shown for a representative network. This is

compared with two values based on the discussion in Section 3.

Consistently, we note that the number of queries required is close

Session 3A: Social Data Analytics 1 CIKM’18, October 22-26, 2018, Torino, Italy

385



to 3τT (ϵ,δ/|E |)ρ/pmin. Even though the number of colors τ is close

to the lower bound, since the probabilities were drawn uniformly

from {0.1, . . . , 0.5}, under the assumption that most color classes

have many edges in them, the probability that every color class has

an edge with probability pmin = 0.1 is high. Under this observation,

the lower bound significantly improves (pmin replaced by pmax).

We note that the number of queries used here (from about 10
7
to

5 × 10
8
) is much larger compared to those in Section 5.2 since the

subgraph generation algorithm was not used.

Dynamical analysis. For every IC model (both true and inferred),

we simulated the spread on all networks by seeding one vertex

at random in each instance. The results are averaged over 100 it-

erations. Figure 8 (left) summarizes the error in the fraction of

influenced nodes in the inferred models when compared with the

reference model. We recall that there are five IC models for every

network with probabilities drawn from the same distribution. The

large variance in mean absolute error suggests that the probability

assignment plays an important role in inference. Also, an increase

in ϵ does not show a corresponding increase in the error. Figure 8

(right) shows average curves of cumulative fraction of nodes in-

fluenced as a function of time for the 5 networks. The variance in

inferred models rises at large outbreak sizes.
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Figure 8: Comparison of dynamics between inferred models and
reference model: We show the error in the average fraction of in-
fections. Representative plots for Enron network are shown (left).
Also shown are the cumulative infection plots (right) for various
networks as a function of time for ϵ = δ = 0.5 (Enron–blue,
Epinion–green, Slashdot–magenta, ER–cyan, and BA–orange). Vari-
ances within 100 iterations of one simulation are about 0.08 maxi-
mum; we show differences across runs with multiple curves.

6 FUTUREWORK
Our work suggests several future research directions under the

active query framework. For example, one can investigate the edge

probability inference problem for other diffusion models such as the

SIR model [10] and its variants (e.g., SEIR model). Another direction

is to obtain probability estimates for a maximum number of edges

under a budget on the number of queries. Finally, it is of interest to

develop a more sophisticated stopping criterion to further reduce

the number of queries needed to obtain provably good performance

guarantees.
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