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Abstract—In anagram games, players are provided with letters
for forming as many words as possible over a specified time du-
ration. Anagram games have been used in controlled experiments
to study problems such as collective identity, effects of goal-
setting, internal-external attributions, test anxiety, and others.
The majority of work on anagram games involves individual
players. Recently, work has expanded to group anagram games
where players cooperate by sharing letters. In this work, we ana-
lyze experimental data from online social networked experiments
of group anagram games. We develop mechanistic and data-
driven models of human decision-making to predict detailed game
player actions (e.g., what word to form next). With these results,
we develop a composite agent-based modeling and simulation
platform that incorporates the models from data analysis. We
compare model predictions against experimental data, which
enables us to provide explanations of human decision-making
and behavior. Finally, we provide illustrative case studies using
agent-based simulations to demonstrate the efficacy of models to
provide insights that are beyond those from experiments alone.

I. INTRODUCTION

A. Background and Motivation

In one form of an individual anagram game, a player
is provided with a set of alphabetical letters to form as

many words as possible in a prescribed time duration. The
performance of a player is often quantified based on the
number of words formed.

In a group anagram game (GrAG), multiple players col-
laborate. Each player is given letters and forms words with her
own letters, and can share letters with her neighbors to enable
everyone to form more words. Figure 1 provides a schematic
of a 3-player GrAG. Each player (v1, v2, and v3) is initially
provided with nl = 3 letters as shown. A player may form
words, and through the communication channels in gray, may
request letters and reply to letter requests.

request “u”

u, r, k

b, g, s c, t, o

form “cot” reply “u”

u, r, k

b, g, s, u c, t, orequest
“g”

form “bug”

time t time t+1

v3v2

v1

v3v2

v1

Fig. 1. Simplified view of a networked group anagram game (GrAG), with
illustrative actions among n = 3 players that communicate and share letters
through the gray channels. Each player is initially given nl = 3 letters. Letters
that a player has “in-hand” to form words are shown in boxes. Player actions
are shown in blue. At time t, v2 requests a “u” from v1 and v3 forms the
word “cot.” At the next time, v2 receives a “u” from v1, forms the word
“bug,” and receives a request from v3.

Overwhelmingly, research on anagram games considers the
individual setting. It has been extensively studied (over 20
published works) for more than 60 years to analyze phe-
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nomena such as goal-setting, compensation types, internal-
external attributions, and test anxiety (e.g., [1], [2]). Other
names for anagram game are word formation game and word
construction game.

There are several reasons to study GrAGs. The research
in [3] used them to study experimentally the formation of
collective identity (CI), defined in social psychology as an
individual’s cognitive, moral, and emotional connection with
a broader community, category, practice, or institution [4]. A
second motivation is their relevance to other types of group
dynamics, notably intergroup and intragroup cooperation and
competition (e.g., [5]). A third motivation is that many of the
phenomena listed above for the individual anagram game (e.g.,
goal-setting) could be studied in group settings with models
of group behavior.

Overall, researches involving anagram games encompass a
broad range of disciplines like sociology, economics, man-
agement science, and (social) psychology [1], [2], [6]. It is
clear that using anagram games is valuable in various fields
of research. The first and only work on modeling GrAGs was
recently completed [7]. We enumerate the differences between
our work and [7] in Section I-B immediately below.

B. Our Work Scope and Differentiators from Previous Work

Work scope. Our work starts with data from online social
network GrAGs. (The game platform and online experiments
are not the focus in this work.) With these data: (i) data analyt-
ics are performed to support model development; (ii) different
models for different player actions in the GrAG are developed;
(iii) the models are evaluated against experimental data; and
(iv) these models are then recast as agent-based models
and executed within an agent-based modeling and simulation
(ABMS) platform to produce computational results that go
beyond the experiments.

Based on this work scope, all of the following are com-
pletely different in this work, compared to that in [7]: data
analytics, the aspects of the game that are being modeled, the
types of modeling techniques used, the models themselves, and
the quantities that the models predict. We address particular
differences between [7] and our work now.
Work in Ref. [7]. The subject of [7] is the action type and time
(ATAT) model, which uses multinomial logistic regression to
build the model. In that work, the goal was to develop models
to predict the type of action taken in time, e.g., predictions
of the form: player vi takes action type “form word” at time
t. Also, if a player action is form word, and the player has
letters that cannot form a word (e.g., letters q, z, and r) then
that model will nevertheless form an unspecified (unrealistic)
word from these letters. Moreover, the models of [7] do not
consider the particular letters assigned to players in a game.
Consequently, all player behaviors will tend toward the same
mean behavior in agent-based simulations (ABSs).
Our work. In contrast, our work focuses on three component
models. Different models are developed for the actions “form
word,” “request letter,” and “reply to (letter) request.” Our
models account for network structure, letter assignments and

letters in-hand (i.e., letters that a player has to form words),
and particular player parameter assignments—all of which can
vary among players—so results will remain distinct across
agents. That is, we capture heterogeneity in several ways.

Our ABMS framework uses a composite model: a combina-
tion of the ATAT model (to determine what action types play-
ers take in time) and the three component models developed
herein (to predict the specifics of each action). The composite
model is our agent-based model (ABM). This ABMS system
simulates GrAG scenarios beyond those of the experiments.

C. Novelty of Our Work

First, our work is an exemplar of a detailed procedure for
combining mechanistic and data-driven models to form single
models of human decision-making that output human actions
in a game. Mechanistic models, for our purposes, have the
following characteristics: (i) the models are based on first
principles and are not tied to any particular domain; and
(ii) the models are specified, implemented, and executed with-
out any experimental data. To augment mechanistic models
by accounting for variability in player behaviors, data-driven
models are constructed from analyses of experimental data.
Second, because we prove that the mechanistic models capture
player behavior, these models explain behaviors, as described
in our contributions below. Third, our mechanistic models are
novel: Levenshtein Distance (LD) [9] (see Section IV-A) and
a greedy optimization procedure describe human decision-
making and have not been used in anagrams contexts (we
could not find LD used in any modeling of human behavior,
as we do here). As called for in the social sciences, our focus
is on model construction and predictions, and explanations of
human behavior [10], [11].

D. Contributions

1. A process for combining mechanistic and data-driven
approaches to build models of human decision-making. We
provide the details of our process in Section IV. See Figure 2.
First, mechanistic models are conjectured and evaluated by
comparing their predictions to experimental data. This does
three things: (i) enables comparisons of model predictions
with experimental data, and if these comparisons are favorable
(which they are), then (ii) the structures of the models, and
the mechanisms embedded in them, provide explanations for
human decision-making [12], [13], and (iii) the mechanistic
models form the basis of the ABMs. Second, because the
mechanistic models can be improved by including data from
experiments, we use data-driven modeling approaches to in-
troduce stochasticity to account for variability across human
subject game players. Hence we utilize these two modeling
approaches in a well-defined process.

2. Mechanistic models. We use concepts such as LD, word
corpora, word proximity networks (WPNs), and a greedy
optimization algorithm (all defined in Section IV) to develop
mechanistic models for two of the three player actions (see
Figure 2). The LD model, used for word formation, could be
used within any agent that is required to form words, and
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Fig. 2. Component models (i.e., combined mechanistic and data-driven
models) for the three player actions in the GrAG. These are models of
human decision-making, which output specific player actions in the game.
The particulars of the mechanistic and data-driven models are given in the
respective boxes under the actions and are detailed in Section IV. Mechanistic
models are built first, and then augmented with data-driven models.

the greedy optimization algorithm, used for requesting letters,
could be used by agents to make a choice from among a
finite set of options. That is, these models are not tied to our
GrAG. But the next contribution presents their utility within
the GrAG.
3. New experimental findings and explanations of player
behaviors based on cognitive and economic theories. The
analyses focus on data for three types of player actions:
(1) form a word; (2) request a letter; and (3) reply to a
letter request. See Figure 2. A summary of some explanations
follows. A word w2 that a player forms is explained by
considering (i) the letters that the player has in-hand (i.e.,
in her possession) and (ii) LD [9] between the most recently
formed word w1 and the next word to be formed w2 from a
candidate set of words (Section IV-B). This is motivated by,
and consistent with, cognitive load theory [14] in that people
try to reduce cognitive load during learning. Here, the closer
the next word formed is to the previously formed word—as
measured by LD—the lesser the cognitive load in forming
a new word. For letter requests, we use the idea that player
action is based on rational choice theory [15]. Our analyses
(Section IV-C) demonstrate that the letter that a player requests
from her neighbors is explained by identifying the letter that
maximally increases the number of words that the player
can form, when also considering the letters that the player
has in-hand (greedy optimization algorithm). This behavior is
consistent with rational choice theory. This is because players’
earnings in games are proportional to the number of words
formed, so it is rational for a player to choose a letter to
maximize the size of their candidate word set. It is interesting
that our explanation means that players are reasoning beyond
more naive approaches, such as simply requesting some “most
frequently” used letter (e.g., preferring e over z). (We have
modeled this naive approach—results not shown here—and
this model’s results are not consistent with the data.) Also,
the experimental data clearly show that players do not request
all the available letters at the outset of a game. Rather, they
request letters throughout the game as they identify use for
them. Finally, we also show that there are four types of

behavior in replying to letter requests (Section IV-D).

4. Agent-based models and results. A family of ABMs are
developed, yielding a composite model, where each ABM is
comprised of a distinct model for each of the three actions,
with user-specified parameter values for player/agent charac-
teristics, such as the agent’s vocabulary and their aptitude,
i.e., the degree to which they perform optimally. The multi-
logit regression model based on [7] is adopted to determine
which action type each agent selects at each discrete time in
a simulation (time granularity is seconds). The selected action
type then determines the appropriate model developed herein
to predict details of the action. Note that there is a fourth
action, a no-operation (no-op), where the agent does nothing at
particular times, which represents agent thinking and requires
no model. We also provide new insights from exercising the
ABMs (see Section V), such as demonstrating how player
performance decreases with decreasing player aptitude and the
effects of heterogeneous initial letter assignments to players.

II. RELATED WORK

By far, the most relevant study to our work is the modeling
in [7], which is agent-based modeling of anagram games.
To the best of our knowledge that is the only work prior to
ours that models the GrAG [7]. That work was discussed in
detail in relation to our work in Sections I-A and I-B. We now
address other topics related to our work.
Anagram experiments. Over 20 experiment works (e.g., [1],
[2]) use single player anagram games. The only cooperative
GrAG, which is face-to-face, is reported in [3]. The game is
used to foster CI among teammates.
Networked experiments and modeling. There are several
other online (e.g., [16]) and in-person (e.g., [3]) experiments
with interacting participants that can be represented as net-
works, and analyses of network populations (e.g., [17], [18]),
where edges represent interaction channels.
Mechanistic and data-driven modeling. Several works use
AI methods and data to model behavior (e.g., tutoring and
learning [19]). Also, neuroscientists are using neuro-imaging
to understand human decision-making; [20] discusses opti-
mization methods, such as the one we use in the model for
requesting letters.
Explanatory modeling. There are many works (e.g., [12],
[13]) that describe different definitions of explanations, differ-
ent types of explanations that models provide, and procedures
for arriving at explanations. We follow ideas from [12], [13]:
that the structure of mechanistic models that adequately predict
human behavior can be used to explain behavior.

III. ONLINE SOCIAL-NETWORKED GROUP ANAGRAM
GAME

We built a customized web application (web app) for an
online GrAG. Players recruited through Amazon Mechanical
Turk (MTurk), are provided game instructions, participate in
the GrAG through their web browsers, and are paid based on
their performance. A total of 48 experiments were performed
using a total of 367 players, with numbers of players per game
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ranging from 3 to 17. The game duration is 5 minutes. In the
following, we describe the GrAG/experiment.

Figure 1 provides a description of the game setup and
actions. A game begins with n players, v1 through vn. Each
player has a degree d that specifies the number of connections
to other players. A connection (edge) between two players
denotes a communication channel where a letter ` can be
requested and sent (sending a letter is a reply). Thus, an
experiment configuration is a graph G(V,E) with player set
V and communication channels E. In experiments, G is a k-
regular random graph (k ≡ d), with uniform degree 2 ≤ k ≤ 8.
Each player starts the game with n` initial letters, which they
can use to form words or share among their neighbors, when
requested. At the beginning of a game, a word corpus CW

is defined with a list of words a player can form during the
game. For this we use a list of the top 5000 words from the
450 million word Corpus of Contemporary American English,
the only large and balanced corpus of American English [22].
The three major player actions in a game are now described.
Player action: forming a word. At any point during a game,
a player vi can form a word wi. All letters in the word wi must
come from the set of letters vi has in-hand Lih

i (superscript
ih). A single letter ` in Lih

i can appear any number of times
in a word. For a word submission to be accepted in the game,
the word has to be in the word corpus CW . The CW is
specified, but it is not provided to players. Rather, players
have to recognize possible words that can be formed from
the letters they have. The CW is the same for all players in
all games. A player can submit a word only once; multiple
players can form the same word.
Player action: requesting a letter. At any point during a
game, a player vi can request a letter `reqij from a neighbor
vj’s set of n` initial letters Linit

j . The anagram game screen
shows all neighbors’ initial letters as available for request. A
letter received by vi is put into the set Lih

i .
Player action: replying with a letter. At any point during a
game, a player vi can reply with a letter `repij to a neighbor
vj’s request (`repij must be in Linit

i ). The anagram game screen
for vi shows all of the letters requested of vi.

To encourage cooperation, any letter in Lih
i can be used

any number of times in forming words, and the letter is not
lost; the letter bestows an infinite supply of use. Similarly, if
vi requests a letter ` from vj , and vj replies with it, vj still
retains a copy of the letter and can use it. Also, earnings for
the team are based on the total number of words formed, and
all players receive (1/n) of the total earnings. Typical player
earnings are $7 to $10 per game.

IV. DATA ANALYSIS AND MODEL DEVELOPMENT

Figure 2 provides the roadmap for building the models for
the three player actions, which is the focus of this section.
Ultimately, our goal is to use these models as ABMs in
an ABMS framework to study GrAGs well beyond those of
experiments.

For each action—which is a component model of the
ABM—we provide: (i) our premise for understanding player

behavior and the key concepts for this premise, (ii) experi-
mental analyses and results for these key ideas that construct
and justify (i.e., give evidence for) the component model of
the composite ABM, and (iii) a formal algorithm for the
component model for the action in Figure 2. Note that the
steps of algorithms that we specify below are not focused on
efficient implementation, but rather on conveying the steps of
the algorithms as they relate to the data analyses. First, we
address preliminaries.

A. Preliminaries

We introduce two concepts used in data analysis and
modeling. Levenshtein distance (dL) [9], an edit distance, is
prominent in our work and the work’s novelty, and is motivated
by work in linguistics and bioinformatics [21]. It quantifies the
difference in letters between two words. In starting with one
word to obtain a second word, a letter substitution counts as
one, as does each of letter insertion and letter deletion. Hence,
going from had to hats requires dL = 2: one to substitute t
for d and one for inserting an s.

A word proximity network (WPN) is a clique graph
H(VH , EH) where vertices VH are words that can be formed,
according to a word corpus CW , with the letters that a player
currently has in-hand and EH is the set of edges between pairs
of words, labeled with the dL between the two words.

B. Player Action: Form Word

Basic premise, assumptions, and key concepts. We seek to
identify a method that explains the process of players selecting
words to form. Our premise is that given the last word w1

that vi has formed, the next word w2 that vi will form will be
one with minimal dL from w1 because this requires a minimal
number of letter manipulations (i.e., lesser cognitive load [14]).
For the first word, vi selects the most frequent word from
the corpus that can be formed with its letters in-hand Lih

i .
(The word corpus provides the frequency of occurrence of
each word.) We note that for each player vi, there is a set
Lih
i of letters that she has in-hand and a corresponding set

W ih
i ⊆ CW of words that vi can form from the entire corpus

CW of words, based on the letters in Lih
i . As vi requests

and receives more letters from her neighbors, the cardinalities
of Lih

i and W ih
i will (typically) increase. Also note that for a

given word w1 formed by vi in a game, W ih
i can be partitioned

based on dL(w1, w2) for fixed w1 and for each w2 ∈ W ih
i

using the WPN. Let W ih
i (w1, d

L) ⊆W ih
i be the set of words

at dL from w1 that vi can form.
Our data analysis is based on two central ideas, for each

player vi. First, we compare dL values between two consecu-
tive words formed (w1 and then w2), both the actual value
dLi,act(w1, w2) measured from experiments and the optimal
(i.e., minimal) value of dL, denoted dLmin(w1, w

∗), for some
w∗ in W ih

i that is at a minimum LD from w1. Both dL values
are based on vi’s set Lih

i . (We drop the arguments when they
are obvious from context.) Second, for a given set of words
at some dL from w1, denoted W ih

i (w1, d
L), we select w2

based on the popularity of words as provided by the rank
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(frequency of use) from [22]. All of these parameters are either
inputs (e.g., CW ), measured in experiments, or computed
from experimental data. These high-level steps enable us to
understand players’ behavior in forming words, as described
next.
Data analysis. Analysis step 1. For each player vi in a game,
we consider pairs of consecutive words formed, (w1, w2).
From this, we compute dLi,act(w1, w2), the actual dL. Also
from these data and from Lih

i at the time w2 was formed,
we can compute dLmin and the word set W ih

i (w1, d
L
min). We

compute ∆dL = dLi,act − dLmin. A value of zero means that
the player is performing optimally according to our premise;
a value > 0 means that vi is performing suboptimally—vi
is making more letter edits (expending greater effort) than is
required by the data.

We rank the players by their average ∆dL, ∆dLave, over all
pairs of words (w1, w2) that they form in a game. We partition
the ranking of players into five equi-sized bins, P1 through P5,
such that players in P1 (resp., P5) have the smallest (resp.,
largest) values of ∆dLave. That is, the players in P1 perform
closest to optimal. A player vi’s aptitude bwf

i in forming words
takes a value from P1 through P5. We take this player-centric
approach because we want to produce agent models based on
individual player and groups of players’ behaviors.

Analysis step 2. For each of the five groups of players
Pj (1 ≤ j ≤ 5), we plot all data points (x, y) =
(dLmin, d

L
i,act(w1, w2)) for each person in that group, in Fig-

ure 3. In each plot, for each dLmin on the x-axis (the mech-
anistic model prediction), there is a range of dLi,act(w1, w2)
(from the data) for all vi in a particular 20% bin. If we break
the players down into 10% bins (instead of the 20% bins),
the top 30% of players perform such that the median value of
dLi,act(w1, w2) equals dLmin. That is, in a median sense, these
top 30% of players form words w2 such that dLi,act(w1, w2) =
dLmin, and hence w2 is formed optimally (i.e., according to the
mechanistic model). Moreover, if we look at the top 80% of
players, then dLmin ≤ dLi,act(w1, w2) ≤ dLmin + 1. That is, for
80% of all players, the pairs of consecutive words, (w1, w2),
produce dLi,act values that differ by at most 1 from the dLmin.
These data for |CW | = 5000 substantiate our premise that
players form word w2 based on dL. Although not shown,
similar results are generated for |CW | = 1000, 2000, 3000,
and 4000, if we take these sets as the 1000, 2000, 3000, and
4000 most frequently used words in the original corpus of
5000 words.

Analysis step 3. For each box plot in Figure 3, we form
a frequency distribution DdL

as a function of the triple
(CW

i , bwf
i , dLmin). Figure 4 provides one such distribution. So,

given a CW
i , an aptitude bwf

i for forming words, and a dLmin,
one can sample an actual LD, dLi,act, in forming w2 from w1.

Analysis step 4. For a given w1 and dLi,act,
W ih

i (w1, d
L
i,act) ⊆ W ih

i is the candidate set of words
that vi can form as w2. The issue is how players extract a
particular word from W ih

i (w1, d
L
i,act) as w2. Figure 5 provides

the answer. For each vi, we rank the words in W ih
i (w1, d

L
i,act)

Fig. 3. Comparison of mechanistic model predictions against data for
the form word model. Mechanistic predictions are the values on the x-axis
(dLmin); data are on the y-axis (dLi,act). We use the |CW | = 5000 word
corpus. Each plot corresponds to a grouping of players by 20% bins of player
performance in forming words according to dL, and represents, in turn, Pj ,
j ∈ {1, 2, 3, 4, 5}, moving left to right. Numbers are numbers of observations
in the data. If dLi,act(w1, w2) = dLmin, then the experimental data correspond
exactly with the mechanistic model.

Fig. 4. For (CW
i , bwf

i , dLmin) =
(5000 words, P1, 1), the distribution
DdL of dLi,act from experiments is
shown. For a given dLmin computed
for optimal behavior, the appropri-
ate distribution is sampled to obtain
dLi,act for vi. These distributions are
formed from the data in Figure 3 and
they are part of the data-driven model
of form word.

in decreasing order of frequency of occurrence (which is
obtained from the word corpus itself), such that the first
ranked word is the most frequently used word. This plot
shows the number of times the chosen word w2 is of a
particular rank. It is clear that players select w2 based on
the frequency of the word’s use, e.g., the top-ranked word
is selected almost 700 times from the corpus. This result
also holds over different corpus sizes from 1000 to 5000
words. These data support our use of a mechanistic model of
selecting the word with highest frequency of use in a word
corpus from the candidate set of words.

0 20 40 60 80 100 120 140
0

100

200

300

400

500

600

700

Rank of Word Chosen from Candidate Word Set

C
ou

nt

Fig. 5. Experimental data for
|CW

i | = 5000. Log-log scale plot
(inset) of the distribution of ranks of
words formed by players from the
word set W ih

i (w1, dLi,act). Lesser
rank means higher word frequency
from corpus. Players most often
choose words with lesser rank (i.e.,
greater frequency).

Remark: These data analyses substantiate our claim that our
models are explanatory. The data are consistent with the
explanation that humans reason about what word to form using
LD and word frequency (familiarity), consistent with cognitive
load theory [14].
Remark: It is emphasized that players in the experiments are
not given a word corpus, frequency of letter use, dL concepts
and values, etc. Our construction and procedures presented
here are our representation of the mental decision-making
processes that players engage in, resulting in human behavior
in the form of detailed actions. In experiments, players are
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Input: Agent vi ∈ V . Agent word-forming aptitude bwf
i . Word corpus or

vocabulary CW
i for vi. Letters in-hand Lih

i . Most recent word formed by
vi, w1. Words W f

i formed up to now by vi. Distribution Dwr of word
frequencies from CW

i and distribution DdL of dLi,act frequency as a
function of tuple (CW

i , bwf
i , dLmin).

Output: Next word w2 that vi forms, if any.
Steps:

1) From letters in-hand Lih
i , construct the set W ih

i of words that vi
can form (and that vi has not yet formed). Set VH = W ih

i and let
H be the WPN network induced by VH . Let the edge set be EH ,
with edge labels of dL.

2) If VH is empty, terminate algorithm and return no word.
3) From the values of the edge labels dL(w1, wj), for all edges
{w1, w∗} ∈ EH of WPN H , where w1, w∗ ∈ VH , determine the
minimum LD, dLmin.

4) For the triple (CW
i , bwf

i , dLmin), sample from the distribution DdL

to obtain the actual LD, dLi,act, that vi will use to form the next
word. (Example provided in Figure 4.)

5) From the set W dLi,act ⊆ VH of words at dLi,act from w1, order the
words from most frequently used word to least (CW provides this
ranking).

6) From the frequency distribution Dwr of words in W dLi,act , draw a
rank ri of a word. Select the unique word w2 that corresponds to
rank ri. Return w2.

Fig. 6. Steps of the Algorithm FORM WORD. This algorithm returns a word
that an agent forms.

only given letters and the ability to share them. This remark
holds for the next two models, too.
Algorithm for form word. The algorithm is in Figure 6, and
follows directly from the above data analysis. This is cast as
the agent model in the ABMS.

C. Player Action: Request Letter

Basic premise, assumptions, and key concepts. Our goal
is to uncover a process that explains how players select the
next letter to request from their neighbors. Our premise is that
player vi will select the next letter to request as the letter from
the set of candidate neighboring letters L′i that produces the
greatest increase in the number of words that vi can form. The
key idea is to examine each candidate letter ` and determine
the number of new words |W ih`

i | that can be formed with
existing letters in Lih

i and the requested letter combined (this
word set is W ih`

i ), rank these letters in decreasing order of
|W ih`

i |, and select the letter to request based on this ranking.
This is a greedy process—in the sense of selecting the best
letter (i.e., the letter that ranks first), one at a time—and is
our mechanstic model. This is a rational choice approach [15]
because players are incentivized to form as many words as
possible, so it is rational to select a letter that maximally
increases the number of words that can be formed. Note that
as more letters have been requested and received, the number
of letters to request, |L′i|, decreases because once a player has
a letter, she can use it any number of times. We now provide
the evidence for behavior that is aligned with this premise.
Data analysis. Analysis step 1. We rank all players by their
performance in requesting letters in the GrAG, as follows.
For each vi, and for each actual letter request, we rank the
candidate letters to request in L′i according to our greedy

model (given immediately above), and then identify the rank
ri,act of the letter `i,act actually requested. Then we compute
an average rank of letter requests ri,ave for each vi, over the
first 1/2 of all vi’s requests. We use only the first 1/2 of
requests in computing ri,ave because as |L′i| decreases, the
selected rank and the top-ranked letters will be more closely
aligned because there are so few letters left. Hence, in order
to not bias the results, we use only the first 1/2 of letter
requests. The players vi are ranked by ri,ave, smallest to
largest value, and the players are partitioned into five equi-
sized bins Q1 through Q5, where players in Q1 (resp., Q5)
select letters to request that are most (resp., least) conformant
to our mechanistic model. A player vi’s aptitude breqi in
requesting letters takes a value from Q1 through Q5. This
partitioning is to ensure a sufficient number of observations
for each bin. Again, we partition based on players because we
want to develop agent behaviors based on player behavior.

Analysis step 2. We analyze each Qj , j ∈ {1, 2, 3, 4, 5},
separately, as follows. We take each vi ∈ Qj , note each
rank ri,act corresponding to each letter request in the first
1/2 of requests, count the number of occurrences of the
ranks of each requested letter, and sum the counts over all
players. Results are shown in the left-most plot of Figure 7
for breqi = Q1 = 20%. (Note that player vi’s aptitude breqi

in requesting letters may take values Q1 through Q5.) These
data are compared against our mechanistic model (in green),
which predicts all letter requests will be of rank 1 in this
plot. Note that for the breqi = Q1 = 20% data, the number
of occurrences of a selected rank generally increases as the
rank decreases, though the effect is sometime less pronounced
for some cases. We claim that the data support our premise,
i.e., our model explains the data. Players request letters that
generate the greatest increase in the words that they can form.

Fig. 7. Comparison of mechanistic model predictions (in green) against
data (the distributions) for the request letter model. Our mechanistic model
predicts all letter requests will be of rank-1 in each of the four plots. (LEFT)
Experimental data are for the 5000-word corpus, aptitude breqi = Q1 = 20%
for letter requests (plots for Qj , j ∈ {2, 3, 4, 5} are not shown). For aptitude
Q1, the frequency of the rank of the chosen letter is plotted. These data show
that players most often choose letters with lower rank, meaning that they
choose letters that can form relatively more words. (RIGHT) These three plots
break down the left-most plot by showing distributions for different request
numbers rnum of 1, 2, and 3, by vi. These distributions D`r are used to
sample ri,act based on (CW

i , breqi , rnum).

Analysis step 3. We break down each plot of the type in
Figure 7, at the left, to account for CW

i , breqi , and the number
rnum of the letter request in the three right-most plots of the
figure. By sampling from frequency distributions D`r based on
(CW

i , breqi , rnum) for vi, we obtain the rank of the actual letter
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Input: Agent vi ∈ V . Agent letter requesting aptitude breqi . Word corpus
CW

i . Letters in-hand Lih
i . The set L′i of letters that vi’s neighbors were

initially assigned that vi has not yet requested; this is the candidate set of
letters to request. The request number rnum. Distributions D`r of letter
ranks for triples (CW

i , breqi , rnum).
Output: Next letter `∗ that vi requests, if any.
Steps:

1) If L′i is empty, terminate and return no letter.
2) For each candidate letter to request ` ∈ L′i that has yet to be

requested, determine the new words W ih`
i that can be formed from

CW with the letters in set Lih
i ∪ {`} (include only words that have

not yet been formed).
3) If every word set W ih`

i for all ` is empty, remove an arbitrary letter
`∗ from L′i, terminate this algorithm and return `∗.

4) Rank the letters ` ∈ L′i in decreasing values of |W ih`
i |. Let r(`) be

the rank of `.
5) Determine the rank ri,act of the letter to select for requesting by

sampling from distribution D`r using as input (CW
i , breqi , rnum).

(See Figure 7 for three examples.)
6) Select the letter `∗ such that r(`∗) = ri,act. Break ties arbitrarily.

Remove `∗ from L′i. Return `∗.

Fig. 8. Steps of the Algorithm REQUEST LETTER. This algorithm returns a
letter that an agent requests.

requested ri,act in the model. This provides finer modeling
granularity by accounting for the number of the letter request.
Algorithm for request letter. The algorithm is in Figure 8
and follows directly from the data analysis just presented. This
algorithm is presented in the form of an agent model.
Remark: These analyses and data provide evidence for our
claim that this model is explanatory. Players generally request
letters by (roughly) maximizing the increase in number of
words that they can form, which follows rational choice
theory [15].

D. Player Action: Reply to Letter Requests

Unlike the previous two models, this model is purely
data-driven. For space reasons, we provide an abbreviated
description here.
Basic premise, assumptions, key ideas, and data analysis.
The goal is to produce a model that explains how players
respond to letter requests from their neighbors. The basic
premise is that players can be partitioned into categories of
behavior. We determined from the data these four categories:
(1) those players that respond to all queued (pending) letter
requests in their buffer (called FB for full buffer); (2) those
that respond to some fraction of all pending letter requests in
their buffer (called LTFB for less than full buffer); (3) those
that sometime behave as FB and sometimes as LTFB (called
Mixed); and (4) those that never reply to letter requests
(called NR). The key ideas are that for each category, we
need to determine: (i) how many replies to letter requests are
made uninterrupted (i.e., contiguously) for categories LTFB
and Mixed, and (ii) for each number of letter replies, the
time duration over which these letter replies are made (for
categories FB, LTFB, and Mixed). These are the four values
for a player vi’s aptitude brpli in replying to letter requests.
Algorithm for reply to (letter) request. Owing to space
limitations, the algorithm is not provided here, but will be

in an extended version of this work.

Remark: In these various algorithms, elements of sets are
returned, or a distribution corresponding to particular inputs
is sampled. In some cases, there are no data for specified
conditions. For these types of situations, we implement a
recursive search technique to sample from the distribution or
set with the closest set of inputs.

V. AGENT-BASED SIMULATIONS AND RESULTS

Remark: Model evaluation is an important step and has been
performed. Figures 3, 4, and 7 are part of this process.
Simulation model. We conduct discrete time agent-based
simulations (ABSs) of the GrAG. Each time unit is one
second of the 300-second GrAG. At each time and for each
agent, an action is selected. Based on the action chosen,
the corresponding model for that action, developed herein,
is executed (Figures 6 and 8 for “form word” and “request
letter,” respectively, and the thinking action is a no-op). Thus,
all agents behavior in the simulations follow these models. We
run nruns = 100 runs or simulation instances and average the
results. We use the 5000-word corpus CW . These are purely
simulation studies and are not tied to the experiments. The
goal is to demonstrate that the models alone provide insights
into human behavior.
Study 1: Effects of model aptitude properties. We use a
game configuration G(V,E) consisting of six players that form
a circle, with each player having two neighbors. The initial
letter assignments are given in Table I. We systematically vary
the aptitudes of players in forming words bwf

i , in requesting
letters breqi , and in replying to letter requests brpli . See Table II.
Recall that these aptitudes correspond to the skill levels of
players.

TABLE I
STUDY 1 INITIAL LETTER ASSIGNMENTS TO PLAYERS IN SIMULATIONS

FOR SIX PLAYERS ARRANGED AS 2-REGULAR GRAPH.

Player #: 1 2 3 4 5 6
Init. Ltrs: b, a, t m, e, n l, u, t s, o, p h, u, g r, i, e

TABLE II
PARAMETERS THAT ARE SYSTEMATICALLY VARIED IN THE SIMULATIONS

OF STUDY 1. THESE APTITUDE (bwf
i , breqi , brpli ) SETTINGS ARE THE

SAME FOR ALL AGENTS IN A SIMULATION.

Sim. No. bwf
i breqi brpli Sim. No. bwf

i breqi brpli

1 P1 Q1 FB 5 P5 Q5 FB
2 P2 Q2 FB 6 P5 Q5 LTFB
3 P3 Q3 FB 7 P5 Q5 NR
4 P4 Q4 FB − − − −

Figure 9 (left) shows the average number of interactions
(requests sent, replies received, requests received, replies sent)
and the average number of words formed per player for the first
five simulation numbers (sim. no.) of Table II. There is a drop-
off in performance in going from bwf

i = P1 to P5, breqi = Q1

to Q5, for fixed brpli =FB. We observe that decreasing the
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letter request aptitude breqi and the word formation aptitude
bwf
i decreases the quality of letters requested and hence the

number of words that can be formed.
To determine how brpli affects performance, we plot in

Figure 9 (right) results from simulation numbers 5, 6, and
7 of Table II. Using bwf

i = P5 and breqi = Q5 as a reference,
there is a large decrease in numbers of reply interactions in
going from brpli =LTFB to brpli =NR, as expected, since NR
means that agents do not reply to letter requests.

Fig. 9. (Left) Simulation results for Sim. nos. 1 through 5 of Table II. The
average number of words formed per player drops in going from bwf

i = P1

to P5, breqi = Q1 to Q5, for fixed brpli =FB. (Right) Simulation results for
Sim. nos. 5, 6, and 7 of Table II. Using bwf

i = P5 and breqi = Q5 as a
baseline, these results show a precipitous drop-off in replies to letter requests,
and to words formed, in going from brpli =LTFB to brpli =NR. Results in
counts for brpli =LTFB are slightly less than those for brpli =FB.

Study 2: Effects of heterogeneity: network connectivity
and quality of letter assignments to players. We use a
game configuration G(V,E) consisting of four players vi
(1 ≤ i ≤ 4) that form a star. The initial letter assignments are
given in Figure 10. All players have the following conditions
bwf
i = P1, breqi = Q1, and brpli =FB. Players are assigned

heterogeneous numbers and qualities of letters; see the figure
caption. The numbers of requests received and replies sent are
greatest for player v1 owing to its centrality; this affects the
number of words player v1 forms, which is less than those
for v2 and v3. Players v2 and v3 have more requests received
from v1 (compared to v4) because their letters (i.e., popular
consonants) create larger sets of possible words to form. The
number of words formed is least for player v4 because of the
poorer quality of assigned letters.

Fig. 10. Simulation for players vi (1 ≤ i ≤ 4), arranged in a star. All players
have the following conditions bwf

i = P1, breqi = Q1, and brpli =FB. Player
v1 is at the center with three neighbors. v1 is assigned the four most popular
vowels in the alphabet; v2, v3 are assigned the six most popular consonants,
and v4 is assigned the five least popular consonants. See text for discussion
of results.

VI. SUMMARY AND FUTURE WORK

We have developed mechanistic and data-driven models for
representing the decision-making and actions of humans in
online networked GrAGs. Our contributions are in Section I-D.

We would like to conduct more experiments with more net-
work structures. This would also (ideally) produce sufficient
data to more finely partition aptitudes—player behavior—
into ten 10% bins (currently, we have five 20% bins). These
experiments would be used to further evaluate the models and
improve them.
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