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Abstract—Abduction is an inference approach that uses data
and observations to identify plausible (and preferably, best)
explanations for phenomena. Applications of abduction (e.g.,
robotics, genetics, image understanding) have largely been devoid
of human behavior. Here, we devise and execute an iterative
abductive analysis process that is driven by the social sciences:
behaviors and interactions among groups of human subjects. One
goal is to understand intra-group cooperation and its effect on
fostering collective identity. We build an online game platform;
perform and analyze controlled laboratory experiments; form
hypotheses; build, exercise, and evaluate network-based agent-
based models; and evaluate the hypotheses in multiple abductive
iterations, improving our understanding as the process unfolds.
While the experimental results are of interest, the paper’s thrust
is methodological, and indeed establishes the potential of iterative
abductive looping for the (computational) social sciences.

I. INTRODUCTION

A. Background and Motivation

Abduction is an inference approach that uses data and

observations to identify plausible (preferably, best) explanations

for phenomena [1]. Abduction has broad application in robotics,

genetics, automated systems, and image understanding [2]–[5].

However, in contrast to this notion of abduction, our

focus is the specification and implementation of an abductive

looping process, wherein abduction is executed in successive

iterations. Every iteration builds off of all previous ones, so

that explanations may evolve from accumulated data. As a

differentiator from previous work, our interests are behaviors

and human interactions within networked groups in the social

sciences.

In particular, our exemplar is to understand whether a

cooperative game can produce collective identity (CI) within a

group. CI is an individual’s cognitive, moral, and emotional

connection with a broader community, category, practice, or

institution [6]. There are many applications and contexts in

which CI is important, including team formation, maintenance,

and behavior in organizations, communities, and marginalized

groups (e.g., [7]–[9]).

Inspired by [10], we use a group anagrams (word construc-

tion) game to engender CI, where players work cooperatively

to form words by sharing letters, and use the Dynamic Identity

Fusion Index (DIFI) score [11] as our measurement of CI.

Identity fusion is a feeling of oneness with the group that

induces people to tether their feelings of personal agency to

the group [11]. Our first novelty is that this is the first work on

performing and analyzing online experiments, and developing

and evaluating agent-based models (ABMs), for the group

anagrams game and CI. (The first face-to-face experiments

were conducted recently [10], with no modeling work done;

their setup is somewhat different than ours.) Our experimental

findings below constitute our second novelty.

The abductive loop (AL) process is described in Section II,

but among its components are experiments and modeling,

and we make note of experiment-modeling interactions here.

There have been several controlled experimental studies of

comparable size to our experiments (e.g., [12]–[14]). Also,

empirically grounded, data-driven modeling of human behavior

is done [15]–[18]. We combine these two ideas, in a particular

way that is guided by abduction, and perform them iteratively.

The proposed abductive analysis is to form hypotheses to

evaluate theories as part of the looping process, and develop

new insights about CI. Thus, our third novelty is abductive

iterations where data drive models, and model predictions

drive new experiments in a principled approach. Looping over

abductive analyses is relatively rare (see the robotics work [2] as

an exception), and the use of abduction and abductive iterationsIEEE/ACM ASONAM 2018, August 28-31, 2018, Barcelona, Spain
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in the social sciences is very rare. Our approach provides an

exemplary case of coupling theory development/evaluation with

real problems [19]: real data guide our theory evaluations.

This work was motivated in part by the DARPA Next

Generation Social Science (NGS2) program. Goals of the

program include devising methods to identify theories that

are and are not applicable for explaining societal events.

B. Contributions

1. Specification and demonstration of iterative abductive
analysis process. Using [20], [21] as a starting point, we

explicitly incorporate modeling and iterations into the abductive

process; the latter necessitates specifying what is to be done

in the next iteration. The iterative process is successfully

demonstrated through the anagrams experiments, agent-based

modeling, and hypothesis generation and testing. The proposed

abductive process can be considered as a general methodology

for other social science researches. For example, our method of

model construction from data (see Contribution 2 below) can

be used to capture other temporal human action sets among

interacting agents.

2. Data-driven networked agent-based models (ABMs) of
experiments: design, construction, and evaluation. We de-

sign, construct, and evaluate three data-driven ABMs as part of

the iterative abductive analysis. We adapt a conditional random

fields (CRF) [22] modeling approach with four parameters to

flexibly incorporate history effects on agent actions that evolve

in time. It can alleviate the overfitting problem that would arise

with, e.g., a static Markov model that would require capturing

many more state transitions. ABM is used as our simulation

modeling approach because of its fine granularity and for its

generative properties [23]; that is, local interactions produce

population-level dynamics. We use inductive and deductive

inference in three ways, use KL-divergence to compare model

predictions with experimental data, compare results from

multiple ABMs, and evaluate the transition matrices of our

ABMs using a statistical approach.

3. New experimental understanding of the formation of
collective identity (CI). We discover three novel insights on

the formation of CI by coupling the team anagrams game and

DIFI score. First, players’ DIFI scores increase with increasing

numbers of neighbors in the anagrams game. Second, the

number of interactions increases as number of neighbors (i.e.,

a player’s network degree) increases from 2 to 4. However,

the numbers of interactions, relatively speaking, saturates

with further increases in degree. Third, despite this saturation,

the DIFI score continues to increase with degree, suggesting

complicated interactions among game parameters. Our analysis

is a first work on quantifying the formation of CI since little

work has been conducted on this subject in the literature. It is

important to note that this experimental work (like the modeling

work) takes place within the abductive loop framework.

Organization. An overview of the abductive loop process is

presented in Section II, providing a framework for the rest of

the paper. Related work is in Section III. In Sections IV and V,

the experiment is described and modeling is presented, which

address the respective components of the abductive loop. This

enables a more streamlined description of the abductive loop

for CI in Section VI. Section VII summarizes.

II. OVERVIEW OF ABDUCTIVE LOOP

Figure 1 illustrates our iterative abductive process, which

includes inductive and deductive steps and hypothesis testing.

This structure follows that of [20], [21], which are based on

Piercian abduction [1], but augments it in key areas. Note

that in contrast to confirmatory (deductive) analyses, where

theories, hypotheses, and models are developed first, and used to

predict subsequent experimental results, one-step abduction first

generates data through experiments or observations. (Abduction

uses data to drive the scientific discovery process.) Then, data

analysis consists of searching for patterns and generalizing

these into phenomena, which is an inductive step. These results

are used to formulate hypotheses based on theories whose

purpose is to explain the data. Hypotheses may exist (from a

previous loop) or may be proposed in this step, and can be

removed (e.g., via falsification). Multiple candidate theories

may be posed for a given phenomena. Models are developed

from the data, with the objective of generating outputs that help

evaluate hypotheses and theories, and/or help guide experiments

for the next loop. The best explanation, or hypothesis/theory

appraisal, is the process of identifying the best explanation

for the phenomena [24]; this includes hypothesis falsification.

Finally, the last step in an iteration is to determine what to

do next, in terms of designing new experiments. The iterative

process may terminate for any number of reasons; e.g., a best

explanation has been found.

Several variations on Figure 1 are possible. For example, the

modeling, hypothesis, and theory steps may be interchanged,

e.g., modeling results may be used to formulate hypotheses

and devise theories. Also, as a model matures, a deductive

analysis may be executed: (quantitative) model predictions in

one iteration are evaluated with new experiments in the next

iteration.

Furthermore, our abductive loop process makes modeling

a much more prominent feature of the process than in [20],

[21]: in hypothesis evaluation and in “What is Next?,” which

specifies experiments for the next loop. Moreover, we build

generative ABMs, while models are based predominantly on

similarity in [20]. Consequently, inference plays a large role in

our work. We execute this loop in Section VI in evaluating CI.

Fig. 1: Steps in our iterative abductive analysis/loop.

III. RELATED WORK

Anagrams and CI Experiments. Over 20 experimental works

(e.g., [25]) use anagrams games—with individual players. The

only cooperative team-play of an anagrams game is reported
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in [10]; their goal, like ours, is to produce CI. While this

motivated our experiment, there are several differences in

procedures and context, e.g., theirs is a face-to-face experiment;

ours is online. They measure CI with the proxy of public goods

game contributions, while we use DIFI score. There are several

in-person experiments studying the implications of CI where

team members interact (e.g., [26]).

Agent Based Models of Anagrams and CI. The closest work

to ours is [27], [28], where ABMs of identity diffusion are

presented in which an agent adopts (changes) her type of

identity to that of a neighbor with a stronger (higher valued)

type of identity. Hence, this is a contagion process much like a

voter model. We, in contrast, model the process of producing

CI. There are no ABMs (or models of any kind) of group

anagrams games, to our knowledge.

Data-Driven Modeling. Data-driven modeling works in-

clude [15]–[18]. These works cover explore-exploit networked

experiments with limited modeling [15]; individual models

of single-choice (i.e., one-shot) evacuation decisions [17];

ABM of emotion and information contagions spreading on

a network and comparisons with a single event [16]; and

ABM of solar panel adoption and comparisons with data in

San Diego county [18]. None of these works use ABMs to

model networked experiments where individuals take a series

of actions (that may be repeated) over time, to study CI.

Abduction and Abductive Loop. Constructive procedures for

implementing abductive analyses include [20], [21]. We extend

those works by making modeling a first-class process, and

by adding the process of what to do in the next iteration. In

addition to the applications cited in the Introduction, abduction

was used to understand emergency room personnels’ efforts to

save injured people in terms of “social viability” [29]. Perhaps

the work closest to ours is [30] in that they develop models

and make predictions based on data. However, their data are

either artificially generated or address isolated individuals, and

they use abduction rather than abductive iterations.

IV. GAME PLATFORM AND EXPERIMENT (GAME)

Web App Platform for Experiments. Owing to space lim-

itations, we provide a very brief overview of the web app

game platform that we built. The platform consists of the

oTree infrastructure [31] for recruiting players from Amazon

Mechanical Turk (AMT) and interactions during the game;

Django Channels for player interactivity; and JavaScript

and HTML for generating the screens for a consent form,

instructions, information, a survey, and game interactions in a

2-phase game. Experiments and data analyses are part of the

abductive loop of Sections II and VI and Figure 1.

2-Phase Game Description. Phase-1 is the group anagrams

(word construction) game, where n players cooperate in sharing

letters to form and submit words of length ≥ 3. Communication

channels between pairs of agents mean that they can share

letters with each other, and this induces a graph on the players.

We use random regular graphs of degree k on the n players

so that everyone has the same number of neighbors. Over all

Fig. 2: The anagrams game screen, phase-1, for one player. This

player has own letters “S,” “O,” and “L” and has requested an

“E” and “A” from neighbors. The “E” is green, so this player’s

request has been fulfilled and so “E” can be used in forming

words. But the request for “A” is still outstanding so cannot

be used in words. Below these letters, it shows that Player 2

has requested “O” and “L” from this player; this player can

reply to these requests, if she so chooses. Below that is a box

where the player types and submits new words, like “SEE.”

abductive loops, experiments are run in groups with nominal

values of 10 ≤ n ≤ 20 and with regular degree 2 ≤ k ≤ 8.

A screen shot of one player’s screen at one point in time, is

shown in Figure 2. Each player is given nl = 3 letters that she

can use to form words and that she can share with others. She

has an infinite supply of letters so that sharing letters does not

inhibit her own use of letters. A player can also request letters

from her neighbors and if the neighbors provide those letters,

then she can use those letters in words, but she cannot pass

on the received letters. Also, letters can be used any number

of times in a word, meaning that if a player forms the word

tat using a and one t (used twice), the player still has the a
and t to form more words. Hence, a player needs to receive a

requested letter only once.

Initially, a player sees her nl own letters and those of all of

her neighbors, but has access only to her own letters. Over the

5-minute anagrams game duration, players can idle, form words,

request letters from their neighbors, and reply to requests.

Team members earn money by forming as many words as

possible. Players are told that the total team earnings et are

split evenly; each player receives et/n, so that it is in their

interest to assist their neighbors. After the phase-1 anagrams

game, each player is told the total number of words formed

by the team, and each player’s individual earnings.

The phase-2 DIFI procedure follows immediately after phase-

1. Each player executes individually the DIFI procedure [11],

to measure the degree to which the player feels part of the

team (i.e., associates their identity with that of the team). Each

player does this by moving a circle in a browser, representing

herself, relative to a fixed team circle. The DIFI score is in the

range [-100,125], with a score < 0 representing no overlap of

circles, and therefore indicating no CI; = 0 representing the
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circles just touching; and > 0 indicating overlap of the two

circles and hence formation of some level of CI. Plots of data

are in Sections V and VI.

V. AGENT-BASED MODELS OF ANAGRAMS GAME AND

MODELING RESULTS

We present three ABMs of the anagrams game that are used

in the abductive loop analyses to follow in Section VI. All

models were developed as part of the abductive loop process,

but are presented here to emphasize their construction and

evaluation, and to obviate the need for a large digression for

the models in the description of the AL process in Section VI.

All models, wherein each player is an agent, are data-driven,

and hence inductive inference is used with data in three ways:

to inform model structure, to characterize model parameters,

and to estimate parameter values.

In all models, we represent the set V of players and their

communication channels E as an undirected graph G (V,E).
The game is modeled as a discrete-time stochastic process,

where at each time step, a player performs one of the actions

from the action set A = {a1, a2, a3, a4}, consisting of: (i) a1:

idling (i.e., thinking); (ii) a2: replying to a neighbor with a

requested letter, (iii) a3: requesting a letter from a neighbor,

and (iv) a4: forming and submitting a word.

ABM M0 is a baseline model that is presented after M1 for

ease of exposition. ABMs M1 and M2 model the actions of

A, but are generic in that request a3 and reply a2 letters and

submit word a4 are not associated with particular letters. For

example, if the player action is a4, then the model assumes

that the player will form a word. In all ABMs, actions are

taken at integer numbers of seconds; that is, simulations of

interacting agents take place as time advances in discrete 1-

second increments from 0 to 300. This time increment is based

on the data.

A. Agent-Based Model M1, and then Baseline Model M0

ABM M1 Development. The goal is to accurately quantify the

transition probability from one action a(t) = ai at time t to the

next action a(t+ 1) = aj for each agent v; i, j ∈ [1..4]; and

a(t) ∈ A. For clarity, we use i and j to represent the actions

ai and aj . Agent v executes a stochastic process driven by

transition probability matrix Π = (πij)m×m, where m ≡ |A|
(here, = 4) and

πij = Pr(a(t+ 1) = j|a(t) = i) with

m∑
j=1

πij = 1 . (1)

To make Π dynamic in time and account for history effects,

four variables are introduced that evolve in time: number zL(t)
of letters that v has available to use (i.e., in hand) at t; number

zW (t) of valid words that v has formed; size zB(t) of the

buffer of letter requests that v has yet to reply to; and number

zC(t) of consecutive time increments that v has taken the same

action. Thus, letting z = (1, zL, zW , zB , zC)(m+1)×1, we can

model πij as a function of these covariates, i.e., πij = fij(z).
We use multinominal logistic regression to model πij as

πij =
exp(z′β(i)

j )

1 +
∑

h �=i exp(z
′β(i)

h )
, (2)

where β
(i)
j = (β

(i)
j1 , . . . , β

(i)
j,m+1)

′, β
(i)
i = 0, and prime

indicates transpose. For a given i, the parameter set can be

expressed as

B(i) =

⎛
⎜⎜⎜⎜⎝

β
(i)
11 β

(i)
12 . . . β

(i)
1,m+1

β
(i)
21 β

(i)
22 . . . β

(i)
2,m+1

...
...

. . .
...

β
(i)
41 β

(i)
42 . . . β

(i)
4,m+1

⎞
⎟⎟⎟⎟⎠

. (3)

Baseline ABM M0. ABM M0 is a simplification of M1. The

transition matrix Π is formed from the data so that the πij in

Equation (1) are constant; time-invariant, independent of z.

Inductive Inference. We address the three dimensions of

inference stated above. First, the model structure is informed by

the k = 2 data. Second, and briefly, the parameters used in the

feature vector z are justified as follows: zL(t) captures the idea

that the more letters v has in-hand, the more likely the agent is

to form words; zW (t) captures the notion that the more words

that have been formed, the larger the vocabulary of the player.

zB(t) captures the notion that the more letter requests that have

not been replied to, the more likely v is to reply; and zC(t)
captures the notion that the more time v is idle (thinking), the

more likely v will take some other action at the next timestep.

Third, parameters in Equation (3) are inferred from the k = 2
experimental data using the framework of maximum likelihood

estimation for the multinomial distribution.

Results. Throughout, we use k to denote the number of neigh-

bors (degree) of an agent v. Also, we evaluate five variables

and their distributions, across all players in a set of games, in

comparing models and experiments: x = (x1, x2, x3, x4, x5),
where x1 is the number of letter replies received (RplR); x2 is

the number of replies sent (RplS); x3 is the number of letter

requests received (RqsR); x4 is the number of requests sent

(RqsS); and x5 is the number of words formed (Wrds). To

measure the performance of our models, we use KL-divergence
between our model prediction on x and the experimental

observation of x, throughout this manuscript.
Figure 3 provides model predictions and comparisons with

experimental results. The first two plots show distributions of

experimental data (in gray) and ABM M1 predictions in red.

The green curves are from the baseline model M0. Clearly,

ABM M1 is in better agreement with the experimental data

compared to M0 in Figures 3a and 3b. From KL-divergence in

Figure 3c, it is clear that the predictions of M1 represent the

experimental data better than those of the baseline model. In

addition, we use M1 to make predictions for graphs with larger

k > 2, resulting in more interactions. Counterintuitively, as

shown in Figure 3d, the number of replies does not change as

k increases. These results call for more experiments at larger k.

Note that we exercise M1 learned from experiments with k = 2
to predict the case of k = 2 (self-consistency checks), and to

predict results of other cases with k > 2, as in Figure 3d.

416
Authorized licensed use limited to: University of Virginia Libraries. Downloaded on October 29,2024 at 14:03:39 UTC from IEEE Xplore.  Restrictions apply. 



0.0

0.1

0.2

−1 0 1 2 3 4 5 6
Replies Received

D
en

si
ty

Baseline
ABM M1
Experiments

(a)

0.000

0.025

0.050

0.075

0.100

0 5 10 15 20 25 30 35 40 45 50
Words Submitted

D
en

si
ty

Baseline
ABM M1
Experiments

(b)

0.00

0.25

0.50

0.75

1.00

RplR RplS RqsR RqsS Wrds

K
L 

D
iv

er
ge

nc
e Baseline

ABM M1

(c)

●●●

●

●

●

0

3

6

9

2 4 6 8
k

# 
re

pl
ie

s 
re

ce
iv

ed

(d)

Fig. 3: ABM M0 and M1 predictions of the k = 2 experiments,

and other simulation results. (a) Distribution of replies received,

and (b) distribution of words formed, each at the end of the

5-minute anagrams game (gray bars) for all k = 2 experiments,

compared to M1 predictions (red) for 100 simulations of an

n = 10 player game. A baseline model M0 is shown in green

for comparison. (c) KL-divergence values for the baseline (M0)

and M1 models across the five parameters of x: lower values

are better. These figures show that M1 generates predictions

much closer to the experimental data than does M0. (d) M1

model distributions predicted for the number of replies received

at the end of game (n = 10, 100 simulations), for different

regular degrees k of the game network G.

We remark that we also fitted M1 using experimental data

with k = 4, and consequently made predictions for the case of

k = 2. We compared the distributions of x between prediction

and experimental results using KL-divergence, whose values

range from 0.11 to 0.46, indicating good predictions.

B. Agent-Based Model M2
Enhancement from ABM M1: arbitrary network topology.
Model M1 was developed with data where all game players

have the same degree k = 2. To generalize M1 to incorporate

various k, we conducted additional experiments with 2 < k ≤ 8
as a part of the second AL (Section VI-B below).
Development for Arbitrary Degree. We build a hierarchical

model to incorporate the effect of agent degree k. For different

values of k, the parameter coefficients in B(i) in Equation (3)

will be a function of k, denoted as B(i)(k). We use an

orthogonal polynomial basis to construct a continuous and

smoothing function for β
(i)
jh (k) for any given i, j, h, as

β
(i)
jh (k) = α

(i,j,h)
0 + α

(i,j,h)
1 ξl(k) + α

(i,j,h)
2 ξq(k), (4)

where ξl and ξq are the linear and quadratic functions of the

orthogonal basis in terms of k. This formulation provides a

means to capture nonlinear effects. We have

B(i)(k) = C
(i)
0 +C

(i)
1 ξl(k) +C

(i)
2 ξq(k), (5)

where

C(i)
r =

⎛
⎜⎜⎜⎜⎝

α
(i,r)
11 α

(i,r)
12 . . . α

(i,r)
1,m+1

α
(i,r)
21 α

(i,r)
22 . . . α

(i,r)
2,m+1

...
...

. . .
...

α
(i,r)
41 α

(i,r)
42 . . . α

(i,r)
4,m+1

⎞
⎟⎟⎟⎟⎠

, r = 0, 1, 2, (6)

with α
(i,r)
ih = 0 for any r and h.

Inductive Inference. To estimate the parameters sets

C
(i)
0 ,C

(i)
1 ,C

(i)
2 , we use maximum likelihood estimation across

the observations for k = 2, 4, 6, and 8.

Results. Figure 4 provides comparison results between ABMs

M1 (red) and M2 (blue). KL-divergence values for distributions

of replies received are shown in Figure 4a.

Although M1 performs well for k = 2, M2 betters M1 for

k > 2, as M2 incorporates experimental data with 2 ≤ k ≤ 8.

This improvement is consistent among other x variables as

shown in Figure 4b.

0
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D
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Fig. 4: Comparisons of KL-divergence values generated with

models ABM M1 and ABM M2. (a) KL-divergence values

for ABM M1 (red) and M2 (blue) for distributions of replies

received, for experiments with k = 2, 4, 6, and 8. M2 gives

much better performance, as expected, as it explicitly accounts

for agent degree. (b) A scatter plot of KL-divergence for M1

(x-axis) and M2 (y-axis) for 4 k values and 5 x variables

(different scales on x,y axes). For k > 2, M2 performs better.

As expected, M1 and M2 perform equally well (highlighted)

for k = 2 as M1 is learned from k = 2 experimental data.

C. Model Evaluation

To evaluate the goodness of fitting for the proposed hi-

erarchical model in Equation (4), we compare the estimated

(model) transition probability matrix Π̂ = (π̂ij) for M2 with the

empirical (data) transition probability matrix Π̃ = (π̃ij) under

different settings of covariates. Here the empirical transition

probability matrices Π̃ are obtained under the settings by

grouping the value of each covariate with three levels, as

described in Table I, to provide comparable numbers of samples

across bins. Under each setting, a level combination of the four

covariates, we compute a counting matrix N = (nij), where

nij is the number of data instances with transition from state i
to state j. Consequently, we calculate the empirical probability

π̂ij =
nij∑
j nij

. There are 324 settings in total, and 279 of them

have valid empirical transition probability matrices. For the

estimated transition probability matrix Π̂ = (π̂ij), the value
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TABLE I: Three bins and ranges of values for the z variables

from Section V-A.

Level Buffer (zB) Letter (zL) Word (zW ) Consec. (zC )
1 0 0-3 0-1 0-3
2 1 4-6 2-8 4-11
3 ≥2 ≥7 ≥9 ≥12

of π̂ij is estimated by the proposed model under each setting

of covariates, where the averaged value at each level of the

covariate is used in the estimated model.

The Root of Mean Squared Errors (RMSE) is used to

quantify the difference between Π̂ = (π̂ij) and Π̃ = (π̃ij).
The RMSE is calculated as follows:

RMSE =

√√√√ 1

4|I|
∑
i∈I

4∑
j=1

(π̂ij − π̃ij)2 (7)

where I = {i : minj nij > 0} is the index set of the rows

where the empirical probability can be obtained.

Under each setting of covariates, we define the Min.Count
as nmin = mini,j{nij : nij > 0} as the smallest nonzero

counts among transitions from state i to state j. It is known

that when nmin is small, the empirical probability π̃ij is not

accurate. Figure 5 shows the scatter plot between the RMSE

and nmin for the 279 settings. From the figure, the proposed

method generally provides an accurate estimation of probability

transition matrix in most settings. Clearly, the value of RMSE

decreases as the Min.Count nmin increases. When nmin ≥ 100,

the value of RMSE is smaller than 0.069, showing very good

model fitting. When nmin is small, the RMSE is relatively

high. One explanation is that the empirical probabilities cannot

be calculated accurately when nmin is small.
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Fig. 5: Scatter plot of RMSE

against Min.Count for dif-

ferent settings of covari-

ates in Table I. See Equa-

tion (7) for RMSE and text

for Min.Count.

VI. ABDUCTIVE LOOP (AL) ANALYSES AND RESULTS

In this section, we present the results of iterative abductive

analyses, using the steps in Figure 1. We present two ALs.

We also present an abductive tree with more hypotheses, that

puts these two loops in context. We note that the experiments

(Section IV) and modeling (Section V) are major components

of the abductive looping process, and were separated out to

make this section more streamlined.

A. Abductive Loop 1 (AL-1)

Experiments. A set of 18 experiments with a total of 87 players

was completed where k = 2.

Data Analysis. Data were explored for patterns [20]. Time-

series of actions in A, per player, show that players tend to

request particular letters with the goal of forming specific

words: when a requested letter is received, there is often a

burst of words formed with that letter. The other extreme, of

requesting all letters initially and then figuring out words, is

done far less frequently. The time-histories of actions, per

player, also led to the model structures of the ABMs. Data

for all players, for the five components of x in Section V-A,

were combined to produce distributions of numbers of actions,

against which models were compared. Measurements of these

variable values are selected for correlation with DIFI scores.

Hypothesis/Theory. Hypothesis H11: In the team-based ana-
grams game, the sense of CI formed is driven more by
the number of words a player forms than the number of
interactions of a player (requests and replies). Social Exchange

Theory [32] focuses on the individual and suggests that the

number of words resonates more in forming CI because they

are directly related to reward in the game. Theory of social

interactions [33] indicates that interactions are important for

forming an interdependent organization. Reciprocity Theory

suggests that vi will respond to vj’s requests because vi wants

vj to respond to hers, so that interactions are important.

Model. The model of Section V-A was constructed from the

time histories of actions of players for experiments with k = 2.

The results relevant to this iteration are provided in Figure 3.

ABM M1 is much better at capturing the dynamics in the

experiments than is baseline model M0.

Best Explanation. Results of a linear regression in Table II

indicate that hypothesis H11 is falsified because Wrds, the

number of words formed, is not significant, while RplR, RplS

and RqsS are significant. Thus, Social Exchange Theory can

be eliminated as theory of CI formation in this experiment. It

is somewhat surprising that Wrds is not significant because

it is the variable that is most closely associated with the

reward (earnings). In the social sciences, and in many domains,

eliminating candidate theories is a valuable result (that is, an

analysis does not always have to identify the best theory).

TABLE II: Results of linear regression of variables in x against

dependent variable DIFI score, indicating that interactions are

more significant than number of words formed in producing

CI. These data are generated in AL-1.

Var. Interc. RplR RplS RqsR RqsS Wrds
est. 103. 15.0 -13.0 6.41 -16.4 -0.213

p-val. 0.001 0.019 0.011 0.332 0.011 0.735

What is Next? Figure 3d indicates that the model predicts

behavior that is invariant with the degrees of players [and

hence the number of letters that neighbors possess] (plots of

other variables of x are similar). We want to determine whether

there is an effect of k, and hence the next experiments are

specified as using increasing k (i.e., k > 2). Thus, the ABM M1

(driven by the data) is guiding what to do next. However, we

are not using M1 to predict specific quantitative experimental

results, as in a deductive analysis. Rather, M1 is used in a

qualitative manner.
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B. Abductive Loop 2 (AL-2)
In reality, we executed multiple abductive iterations, studying,

in turn, k = 4 and then k = 6, 8. However, in the interest of

space, we combine them into one iteration.
Experiments. A set of 16 experiments with a total of 137

players was completed where k = 4, 6, and 8, respectively.
Data Analysis. We continued the same types of analyses

described in AL-1, but with the added dimension of k.
Hypothesis/Theory. Hypothesis H22: (a) As the number of
neighbors increases in the anagrams game, the level of CI
increases because there are more interactions. (b) However,
beyond four neighbors (equivalently, for more than 12 neighbor
letters) there is no benefit of additional neighbors. The

theory of social interactions states that interactions with more

neighbors creates more interdependence. Theory of cognitive

load [34] suggests that cognitive load might be too great at

some point, resulting in a player being unable to take advantage

of more input.
Model. The model of Section V-B was constructed from the

time histories of actions of players, from the combined data

from both iterations. Model results relevant to this iteration

are provided in Figure 4. ABM M2 captures trends in degree

k much more effectively than ABM M1, for all parameters of

x. Although not shown, ABM M2 shows effects of increasing

k: the predicted numbers of actions increases as k increases,

which is far different from the predictions in Figure 3d for

ABM M1, where k has no effect.
Best Explanation. Figure 6 provides results that address hy-

potheses H22(a) and H22(b). Note that H22(b) has two inter-

pretations because “benefit” may be in terms of numbers of

interactions (from AL-1) or in terms of DIFI score. We first

examine H22(b) in terms of numbers of interactions. Figure 6a

shows the frequency distributions for replies received, for the

four values of k. Focusing on interactions, note the large change

in distributions in going from k = 2 to k = 4, but relatively

minor changes for further increases in k. Thus, the saturation

in the distributions (and others are similar), supports hypothesis

H22(b): the number of neighbors increases, but the number

of interactions does not, for k > 4. This is consistent with

cognitive load theory.
Now we evaluate H22(a) and (b) in terms of DIFI score.

Figure 6b shows that as k increases from 2 to 8, the probability

density of DIFI scores shifts demonstrably to increasing DIFI.

That is, greater numbers of neighbors produce more CI, as

measured by the DIFI score. This does not wholly support

H22(a); while increasing k does correlate with increasing DIFI

score, it is not because of the number of interactions, which

does not increase appreciably for k > 4. These data falsify

H22(b): there is additional benefit, in terms of increased DIFI

score, with increasing number of neighbors. The applicability

of the theory of social interactions is not clear, but the data

suggest that it is the number of different people with whom

one interacts that is important, rather than the total number of

interactions. More experiments are needed.
What is Next? At this point we halt the iterative abduction

process for this paper, although it could continue. In a next

k=2, RplR

Fr
eq

ue
nc

y

0 4 8 14

0
10

20

k=4, RplR

Fr
eq

ue
nc

y

0 4 8 14

0
5

15

k=6, RplR

Fr
eq

ue
nc

y

0 4 8 14

0
2

4
6

k=8, RplR

Fr
eq

ue
nc

y

0 4 8 14

0
4

8

(a)

k=2, DIFI

D
en

si
ty

−100 0 1000.
00

0.
02

0.
04

k=4, DIFI

D
en

si
ty

−100 0 1000.
00

0.
02

0.
04

k=6, DIFI

D
en

si
ty

−100 0 1000.
00

0.
02

0.
04

k=8, DIFI

D
en

si
ty

−100 0 1000.
00

0.
02

0.
04

(b)

Fig. 6: Statistical analysis correlation results of the anagrams

game parameters and DIFI score. (a) Frequency distributions

of replies received change markedly from k = 2 to k = 4, but

relatively little for further increasing k. (b) Probability density

of DIFI score moves dramatically to larger DIFI score with

increasing k. Each of these results is novel—these results are

new. All the more novel is the combination of the two: while

game measurables saturate (other data besides replies received),

the DIFI score does not. These data are generated in AL-2.

iteration, we could (i) try to isolate the effects of number

of interactions versus the number of neighbors in different

experiments, or (ii) study the effects of different degrees of

players and different numbers and qualities of letters initially

assigned to players within the same experiment. We could also

perform a deductive (confirmatory) analysis by making specific

quantitative predictions for experiments using ABM M2 as

part of AL-2, and running corresponding experiments in AL-3.

C. Abductive Loops: Role of Analyst and Bigger Picture

Two ALs have been demonstrated. Many additional loops

are possible, as illustrated in Figure 7, which depicts several

hypotheses, including the two addressed above (in orange).

Figure 7 and Table III make clear the important role of an

analyst in this process, as she guides the direction of the

looping. So, while a plan such as that in Figure 7 may be useful,

the actual tree structure will evolve with analyst decisions as

the looping progresses and as data are generated, because

hypotheses are based on newly-generated data in abduction.

VII. SUMMARY

We formalize an abductive loop, implement it computation-

ally, and exercise it in an experimental setting (the anagram

game) designed to induce CI, as operationalized by Swann’s

DIFI score. However, our abductive looping process is not

tied to CI. As part of the abductive iterations, we provide

novel experimental insights into CI and build and evaluate

three ABMs. This work establishes the potential of iterative

abductive looping for the (computational) social sciences.
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Fig. 7: Abductive tree representing candidate abductive loops

with dependencies. Hypotheses are nodes, and are provided

in Table III; edges are outcomes of ALs. The orange colored

nodes correspond to abductive iterations presented herein. The

red node is a candidate next loop. This tree is not unique;

different analysts can devise different trees. Note that the actual

hypotheses are not specified a priori; they are based on newly-

generated data from the abductive iterations per Figure 1.

TABLE III: Candidate hypotheses to be evaluated in abductive

iterations of Figure 7. Hypotheses H11 and H22 are given in

the text. H43 is the same as H22.

Hypothesis
Number

Description

H12 Playing the Phase 1 Anagrams game will produce greater
individual DIFI scores than not playing Phase 1.

H21 =
H32

As the number and quality of letters assigned to a person
decreases (i.e., as the letters assigned to a player occur less
frequently in common words), collective identity of the player
will increase.

H31 =
H42 =
H44

Playing the game with players face to face will produce
greater individual DIFI scores in Phase 2 (by enabling players
to communicate and pick up on visual and verbal cues).

H33 Lesser payouts in the Phase 1 anagrams game means
that players do not have enough incentive to engage their
neighbors.

H41 Having the Phase 1 game score of another team displayed
during Phase 1 will increase CI because it will create a
stronger in-group/out-group paradigm.
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